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This column is an open forum. We welcome opinions
on all mathematical issues: research, education, and
communication. Please feel free to write.
Opinions expressed in this magazine do not necessarily reflect
those of the Editorial Board, PIMS, or its sponsors.

Reckoning and Reasoning

or

The Joy of Rote

by

by Klaus Hoechsmann†

You might have heard of this story, but it bears being
repeated. In 1992, Lou D’Amore, a science teacher in the
Toronto area, sprung a Grade 3 arithmetic test from 1932 on
his Grade 9 class, and found that only 25% of his students
could do all of the following questions.

1. Subtract these numbers: 9, 864 − 5, 947

2. Multiply: 92 × 34

3. Add the following: $126.30 + $265.12 + $196.40

4. An airplane travels 360 kilometers in three hours.
How far does it go in one hour?

5. If a pie is cut into sixths, how many pieces would
there be?

6. William bought six oranges at 5 cents each and
had 15 cents left over. How much had he at first?

7. Jane had $2.75. Mary had 95 cents more than
Jane. How much did Jane and Mary have to-
gether?

8. A boy bought a bicycle for $21.50. He sold it for
$23.75. Did he gain or lose and by how much?

9. Mary’s mother bought a hat for $2.85. What was
her change from $5?

10. There are 36 children in one room and 33 in the
other room in Tom’s school. How much will it
cost to buy a crayon at 7 cents each for each child?

† Klaus Hoechsmann is a professor emeritus at the Univer-
sity of British Columbia in Vancouver, B.C. You can find more
information about the author and other interesting articles at:
http://www.math.ubc.ca/∼hoek/Teaching/teaching.html.

This modest quiz quickly rose to fame as “The D’Amore
Test.” Other teachers tried it on their classes, with similar
results. There was some improvement in Grades 10 to 12,
where 27% of students could get through it, but they tend
to be keener anyway since their less ambitious class-mates
usually give up on quantitative science after Grade 9. All
in all, the chance of acing the D’Amore Test appears to be
independent of anything learned in high school.

At first glance this seems as it should be, because the
test certainly contains no “high school material”. On second
thought, however, a strange asymmetry appears: while all
students expect to use the first two R’s (Readin’ and Ritin’)
throughout their schooling and beyond, they drop the third R
(Rithmetic) as soon as they can—if indeed they acquired it at
all. Has it always been like this? I doubt it: my grandmother
went to school only twice a week (being needed in yard and
kitchen) but was later able to handle all the arithmetic in
her little grocery store without prior attendance of remedial
classes. She did not even have a cash register.

To many administrators, think-tankers, etc., this is beside
the point, because we now live in the brave new computer
age. A highly placed person who has likely never repaired
a car engine, and probably knows little about computers,
suggested that 20 years ago, “an auto mechanic needed
to be good at working with his hands,” whereas now
he needs Algebra 11 and 12 to run his array of robots.
For a more insights of this kind, you might wish to visit
www.geocities.com/Eureka/Plaza/2631/articles.html,
where electricians, machinists, tool-and-die makers, and
plumbers are also included “among those who need Grade
XI or XII algebra.” It doesn’t say what for.

Mechanics laugh at this: remember the breaker-point gaps,
ignition timing, engine compression, battery charge, alterna-
tor voltage, headlight angle, and a multitude of other nu-
merical values we had to juggle in our minds and check with
fairly simple tools—today’s gadgets make our jobs more rou-
tine, they say. But ministerial bureaucrats tend to believe
the hype, with a fervour proportional to their distance from
“Mathematics 12,” which has gobbled up Algebra 12 in most
places I know.

Aye, there’s the rub: the third R has morphed into the
notorious M. “What’s in a name?,” you ask, “that which we
called rithmetic by any other word would sound as meek.”
How many times must you be told that M is hard and bor-
ing, and hear the refrain “I have never been good at M”?
It is the perfect cop-out, acceptable even in the most exclu-
sive company—a kind of egalitarian salute by which “nor-
mal” members of the species homo sapiens recognize one an-
other. How can a teacher of, say, social studies be expected
to develop vivid lessons around unemployment, national debt,
or global warming—as long as these topics are mired in M?
He/she still must mention numbers, to be sure, but can now
present them in good conscience as disconnected facts, know-
ing that his/her students’ minds will be uplifted in another
class, by that lofty but (to him/her) impenetrable M.

Ask any marketing expert: labels are not value-free, they
attract, repel, or leave you indifferent. Above all, they raise
expectations, which, in the case of M, are as manifold and var-
ied as the subject itself. Is it conceptualization, exploration,
visualization, constructivism, higher-order thinking, problem
solving—or all of the above? The guessing and experiment-
ing goes on and on, producing bumper crops of learned papers
and theses, conferences, surveys, and committees, as well as
confused students and teachers. “This is the first time in his-
tory that Jewish children cannot learn arithmetic” said an
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Israeli colleague, referring to the state of Western style edu-
cation in his country, where the recent Russian immigrants
maintain a parallel school system.

Not every country has followed the R to M conversion.
In the Netherlands and (what was) Yugoslavia, children still
learn rekenen and račun, respectively, together with reading
and writing. The more weighty M is left for later. Germany
clung to Rechnen till the 1960’s, and then rashly followed
the American lead, pushing Mathematik all the way down to
Kindergarten—with the effect of finding itself cheek-to-jowl
with the US (near the end of the list) in international com-
parisons.

I hear the sound of daggers being honed: what is this guy
trying to sell (in this culture we are all vendors), is it “Back to
Basics”? Does he hanker for “Drill and Kill,” for “Top Down”
at a time when all good men and women aspire to “Bottom
Up”? Readers unaccustomed to Educators’ discourse might
be puzzled at such extreme positions getting serious attention.
They would immediately see middle ground between tyranny
and anarchy, boot camp and nature trail, etc. Why do we
always argue Black versus White? I really cannot explain it.
Maybe it is because we need strident voices and must hold
single notes as long as we can, in order to be noticed in this
mighty chorus. How did we get here?

Although the benefits of planned obsolescence are obvious,
they are not often mentioned to justify the present trend to-
ward innumeracy. It is the relentless advance of technology
which must be seen as the main reason for the retreat of ar-
chaic skills. Speech-recognizing computers already exist, and
once they are mass-produced, writing will not need to be
taught anymore, at least not at public expense. Whatever we
now do with our hands and various other body-parts outside
the brain will clearly fall into the domain of sports. Only in
this spirit does it make sense to climb a mountain top that
can be more safely reached by helicopter.

Before the advent of electric and later electronic calcula-
tors, computations had to follow rigid algorithms that al-
lowed the boss or auditor to check them. This was “pro-
cedural knowledge” of an almost military kind—justly de-
spised and rejected when it became obsolete. Oddly enough it
did, however, have an important by-product: by sheer habit,
simple calculations were done at lightning speed, and often
mentally—of course with a large subconscious component. In
many places, this “mental arithmetic” was even practised as
a kind of sport, still “procedural,” in some sense, but open to
improvisation—more like soccer than like target shooting.

Look at the first question of the D’Amore Test: 9, 864 −
5, 947. Abe did it the conventional way and had to “borrow”
twice. Beth zeroed in on the last three digits, noting that
947 exceeded 864 by 36+47 = 83, which she subtracted from
4000. Chris topped up the second number by 53 to 6000 and
hence had to increase the first one to 9, 864 + 53 = 9, 917.
Dan and Edith had yet different ways, but all got 3, 917. On
the second question, Abe again used the standard method,
since he was a bit lazy but meticulous. Beth looked at the 92
and thought 100− 10 + 2, playing it very safe. Chris spotted
one of his favourite short-cuts: 3 × 17 = 51, and reasoned
that 9× 34 = 6 × 51 = 306, and so on. Dan was attracted to
the fact that 92 was twice 46, which lies as far above 40 as 34
lies below it. Therefore 46 × 34 was 1600 − 36, which had to
be doubled to 3200 − 72. Edith blurted out the answer 3128
and said she did not remember how she got it.

When I was in Grade 7, I knew such kids—and was irked
by the fact that many played this mental game as well as they

played soccer. Justice was restored when, in Grade 8, they
were left in the dust by x and y but continued to outrun me
on the playing field. Maybe they never missed the x and y
in later life (unlike contemporary plumbers), but I am almost
sure their “number sense” often came in handy. Today’s kids
are to acquire this virtue by doing brain-teasers and learning
to “think like mathematicians,” carefully avoiding “mindless
rote.”

Whenever I walk by the open door of a mathematician’s
work place, I see black or white boards covered with calcu-
lations and diagrams. How come they get to indulge in this
“rote,” while kids must fiddle with manipulations or puzzle
till their heads ache? Could it be that we mathematicians
sometimes engage in “mindful rote”—the kind known to mu-
sicians and athletes? If so, we ought to step out of the closet
and tell the world about the joy of rote. Anyone who has ob-
served young children will immediately know what we mean.

And while we’re at it, we might reclaim ownership of the
M-word, at least suggest that it be kept out of the K-4 world.
This does not mean that schools should go back to teaching
’rithmetic—admittedly an awkward label. How about “reck-
oning and reasoning,” a third and fourth R to balance the first
two? They would be associated with good old common sense,
and, as Descartes has pointed out, nobody ever complains of
not having enough of that.

There are 10 kinds of mathematicians. Those who can think in
binary and those who can’t. . .

Two math professors are hanging out in a bar.

“You know,” the first one complains. “Teaching mathematics
nowadays is pearls for swine: the general public is completely clue-
less about what mathematics actually is.”

“You’re right!” says his colleague. “Look at the waitress. I’m
sure she has no clue about any math she doesn’t need to give out
correct change—and maybe not even that.”

“Well, let’s have some fun and put her to the test,” the first prof
replies. He waves the waitress to their table and asks: “Excuse us,
but you seem to be an intelligent young woman. Can you tell us
what the square of a + b is?”

The girl smiles: “That’s easy: it’s a2 + b2. . . ”

The professors look at each another with a barely hidden smirk
on their faces, when the waitress adds: “. . . provided that the field
under consideration has characteristic two.”

Q: What is the difference between a Ph.D. in mathematics and
a large pizza?

A: A large pizza can feed a family of four. . .

A French mathematician’s pick up line: “Voulez–vous Cauchy
avec moi?”
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Maths and Moths
Jeremy Tatum†

I don’t reveal to many what some might regard as my some-
what eccentric hobby of rearing caterpillars and photograph-
ing the moths that ultimately emerge. This is my form of
relaxation after the day is done, and my mind by then is
usually far from mathematics.

Yet there is a moth, the Peppered Moth (Biston betularia),
that lends itself well to mathematical analysis. It is common
in Europe and in North America, including the west coast of
Canada and the United States. It is often held to represent
one of the fastest known examples of Darwinian evolution
by variation and natural selection. A vast literature has ac-
cumulated on this moth, both by scientists and, I recently
discovered, by creationists. The latter seek to disprove the
hypothesis that it is an example of evolution, and their argu-
ments do, I suppose, at least keep scientists on their toes to
ensure that their evidence is compelling.

Figure 1: The normal “peppered” form of Biston betularia.
Photographed by the author on Vancouver Island, British
Columbia.

The normal form of the moth has a “peppered” appearance,
shown by the specimen in Figure 1, which I photographed on
Vancouver Island. When this normal form rests on a lichen-
covered tree trunk it is very difficult to see; it is well protected
by its cryptic coloration. There is another form that is almost
completely black—the melanic form, illustrated in Figure 2
from a photograph taken in England by Ian Kimber. It is
quite conspicuous when resting on a lichen-covered tree trunk,
and it is at a grave selective disadvantage. The melanic forms
are readily snapped up by hungry birds.

† Jeremy Tatum is a former professor in the Department of Physics
and Astronomy of the University of Victoria. His E-mail address is
universe@uvvm.uvic.ca.

Figure 2: The melanic form of Biston betularia. Pho-
tographed by Ian Kimber in England.

In industrial areas of nineteenth century England, long be-
fore modern atmospheric pollution controls, factory chimneys
belched out huge quantities of black smoke, which killed the
lichens and coated the tree trunks with dirty black grime.
Suddenly the “normal” form became conspicuous, and the
melanic form cryptic. Within a few generations the popula-
tions of these moths changed from almost entirely “normal”
to almost entirely “melanic.” This is a situation that cries
out for some sort of population growth analysis.

We first have to understand a little about genetics—and I
hope that professional geneticists will forgive me if I simplify
this just a little for the purpose of this article.

Figure 3: A melanic, a normal, and an intermediate form of
Biston betularia. Photographed by Ian Kimber in England.

The colour of the moths’ wings is determined by two genes,
which I denote by M for melanic and n for normal. Each moth
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inherits one gene from each of its parents. Consequently the
“genotype” of an individual moth can be one of three types:
MM , Mn or nn. MM and nn are described as “homozy-
gous,” and Mn is “heterozygous.” An MM moth is melanic
in appearance, and an nn moth is normal. What does an Mn
moth look like? Well, surprisingly, the heterozygous moth
isn’t intermediate in appearance; it is melanic. Because of
this, we say that the M gene is dominant over the n gene;
the n gene is recessive. That is why I have written M as a
capital letter and n as a small letter.

(Actually the situation is rather more complicated than
this, and there are indeed intermediate forms, as shown in
Ian Kimber’s photograph in Figure 3—but the purpose of
this article is to illustrate some principles of mathematical
analysis of natural selection, not to bog ourselves down in
detail. So I’ll keep the model simple and, to begin with, I’ll
suppose that just the two genes are involved and that one is
completely dominant over the other.)

One can see now how vulnerable the M gene is in an unpol-
luted environment. Not only MM moths but also Mn moths
are conspicuous and are easily snapped up by birds; the M
gene doesn’t stand a chance. But now blacken the tree trunks.
MM and Mn are black and protected; the homozygous nn
form is conspicuous. The n gene, however, does not disap-
pear, because it is protected in the Mn individuals, which are
black. The populations become predominantly composed of
black individuals, some of which are MM and some are Mn.

Now for our first mathematics question. Suppose we have
a large population, N , of moths. Each moth will have two
genes that control wing colour, so there will be 2N such genes
distributed among the N moths. Let us suppose that a frac-
tion x of these genes are M and a fraction 1 − x of them are
n. What fraction of the population of moths will be genotyp-
ically MM , what fraction will be Mn, and what fraction will
be nn? The answers are the successive terms of the expansion
of [x + (1− x)]2. That is, the fractions of MM , Mn, and nn
moths in the population will be x2, 2x(1 − x), and (1 − x)2.
(Verify that the sum of these is 1.) Since both MM and Mn
are phenotypically melanic (i.e. melanic in external appear-
ance), the fraction of melanic moths in the population will be
x(2 − x) and the fraction of normal moths will be (1 − x)2.

Now, according to our theory, melanic moths in a polluted
environment have a selective advantage over normal moths.
Can we define “selective advantage” quantitatively? Let us
suppose that a generation of moths emerges from their pupae
such that the gene ratio M : n is x : 1 − x, and hence that
the genotype ratio MM : Mn : nn is x2 : 2x(1−x) : (1−x)2.
Let us suppose that, by the time these moths are ready to
lay their eggs to produce the next generation, the number of
phenotypically melanic moths has been reduced by a factor α
(0 ≤ α ≤ 1) and the number of phenotypically normal moths
has been reduced by a factor γ (0 ≤ γ ≤ 1). I define the
selective advantage s of the melanic moths as

s =
α − γ

α + γ
. (1)

This number lies between −1 to +1. If s = −1, the melanic
form is at a severe disadvantage and indeed it is lethal to be
black (as in unpolluted woods). No melanic moth will survive.
If s = +1, the melanic form has a huge advantage; indeed it is
lethal to be normal (as in polluted woods). No normal moths
will survive. If s = 0, neither form has an advantage over the
other.

Note that both the MM and Mn moth numbers are re-

duced by the factor α. The next generation of moths, then,
starts out with relative genotype frequencies

MM : Mn : nn = αx2 : 2αx(1 − x) : γ(1 − x)2. (2)

or, to normalize these proportions so that their sum is 1,

MM : Mn : nn =
αx2

Σ
:

2αx(1 − x)

Σ
:

γ(1 − x)2

Σ
, (3)

where

Σ = αx2 + 2αx(1 − x) + γ(1 − x)2

= (γ − α)x2 − 2(γ − α)x + γ.
(4)

Each MM moth contributes two M genes to the gene pool,
and each Mn moth contributes one M gene. Therefore, the

fraction of M genes in the new generation is αx2

Σ + αx(1−x)
Σ ,

or αx
Σ .

Now by inverting equation (1) we find that

γ

α
=

1 − s

1 + s
. (5)

By using this, we can now express the gene frequencies in the
new generation in terms of the selective advantage. Recall
that in the initial generation the relative gene frequency was

M : n = x : 1 − x. (6)

In the new generation it is

M : n =
(1 + s)x

1 − s + 4sx − 2sx2
:

1 − s + (3s − 1)x − 2sx2

1 − s + 4sx − 2sx2
. (7)

We can apply this to generation after generation to see how
the proportion of M gene changes from generation in terms
of the selective advantage (or disadvantage).
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Figure 4: Complete dominance of M over n. Growth of the
M -gene fraction x with generation number for ten selective
advantages, from s = 0.1 to 1.0 in steps of 0.1.

In Figure 4, I start with a fraction x = 0.001 of M genes,
and I watch the growth of this fraction with generation num-
ber for ten positive values of selective advantage—i.e. advan-
tage to melanic moths on soot-covered tree trunks. Even for
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a mild advantage (s = 0.1), the fraction of M genes soon
grows, while for a large advantage (s = 0.9) the growth of
the M gene fraction is very rapid indeed, and this is believed
to have happened to the moth Biston betularia in industrial
areas in Britain. Note, however, that even if s = 1.0 (all nor-
mal phenotypes discovered and eaten by birds), the n gene
survives (albeit in small numbers) because it is hidden and
protected in the heterozygous Mn moths, which are pheno-
typically melanic.

What happens if we start with a high proportion of melanic
genes, say x = 0.999, and put the moths in an unpol-
luted wood, where the tree trunks are lichen-covered, and
the melanics are at a selective disadvantage (s is negative)?
This in fact appears to be happening now in England, where
air pollution controls are resulting in lichens recolonizing
tree trunks that had become blackened with soot in a less
environmentally-conscious era. Well, if we do the calcula-
tions, starting with x = 0.999, we find that almost nothing
happens unless s = −1 exactly, in which case being a melanic
phenotype is a death sentence, whether genotypically MM
or Mn. The melanic gene is immediately extirpated. How-
ever, for any other negative value of selective advantage, very
little happens for many generations, and the population re-
mains predominantly melanic. This is because, even though
the normal moths have the advantage, there are hardly any
of them to enjoy it. Thus if the fraction of genes that are
M is 0.999, the fraction of moths that are normal is only
(0.001)2, or 0.000001. For example, if we start with the frac-
tion of M genes x = 0.999, and put them under a severe
selective disadvantage of s = −0.9, even after 50 generations
x is still 0.9927. However, after x has dropped to about 0.95,
and normal (advantaged) moths begin to appear in the pop-
ulation in appreciable numbers, the decline of the M gene is
rapid or even catastrophic. (Is this why the dinosaurs sud-
denly vanished after a long period of world dominance? Just
a thought!) Indeed, since the disadvantaged M gene is not
hidden and protected in the heterozygous moth, the M gene is
eventually completely extirpated. In Figure 5, I have started
with x = 0.9 (which is low enough for the start of rapid de-
cline after a long period of quasistability), and we follow the
decline of the M gene for a further 75 generations for 10 neg-
ative values of selective advantage.
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Figure 5: Complete dominance of M over n. Decline of the
M -gene fraction x with generation number for ten selective
advantages, s = −0.1, to −1.0 in steps of 0.1

So far, we have considered the case where one gene is com-

pletely dominant over another—but this is not always the
case. In some species of moth the heterozygous form is inter-
mediate in appearance to the two homozygous forms. In that
case I’ll use a small m for the “melanic” gene and a small n
for the “normal” gene, so as not to give the impression that
one is dominant over the other. The three possible genotypes
are then mm, mn and nn, and they correspond to three phe-
notypes, melanic, intermediate and normal. I need to define
selective advantage for each of the three forms, which I do
as follows. I suppose that when one generation hatches from
eggs, the relative numbers of genotypes in the population are
in the proportion

mm : mn : nn = X : Y : Z. (8)

Let us suppose that, by the time these moths lay their eggs
to start the next generation, the numbers of melanic, inter-
mediate and normal moths have been reduced by fractions α,
β, and γ respectively. Then I define the selective advantages
of the three forms as follows:

mm : s1 =
2α − β − γ

2α + β + γ
, (9)

mn : s2 =
2β − γ − α

2β + γ + α
, (10)

nn : s3 =
2γ − α − β

2γ + α + β
, (11)

These are not independent, and it takes a little algebra to
show that they are related by

s1s2s3 − 2(s2s3 + s3s1 + s1s2) + 3(s1 + s2 + s3) = 0. (12)

They all have the property that they are in the range −1 to
+1. A value of +1 means that the other two genotypes are
completely destroyed, whereas a value of −1 means that that
genotype is completely destroyed.

We can then do just what we did before when we went from
equation (1) to equation (3). We suppose that the gene ratio
of one generation is x : 1 − x. Then it works out that the
fraction of m genes in the next generation is

(α − β)x2 + βx

(α − 2β + γ)x2 + 2(β − γ)x + γ
. (13)

Readers might like to convince themselves why it is not
possible to invert equations (9)–(11) to express α, β, and
γ uniquely in terms of the selective advantages, which is why
it is more convenient and informative to write equation (13)
in terms of α, β, and γ. One can then easily get a computer
to apply this formula through generation after generation and
see how the fraction of m genes changes with generation num-
ber.

There are four qualitatively different cases to consider.

I. The homozygous melanic mm is the fittest, and the ho-
mozygous normal nn is least fit. That is α > β > γ. In
Figure 6(a) I illustrate this for α = 0.4, β = 0.3, and γ =
0.1. These correspond to s1 = +0.333, s2 = +0.090, and
s3 = -0.555. I start with x = 0.001. The proportion of
the m gene rapidly increases and the n gene eventually
becomes extinct.

7



| | | | | | |

0 5 10 15 20 25 30

|
|

|
|

|
|

|
|

|
|

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a)

(b)x
,
th

e
fr

ac
ti

on
of

m
ge

n
es

Generation number

Figure 6: No dominance. (a) Case I. mm is the fittest,
nn is the least fit. (b) Case II. mm is the least fit, nn
is the fittest.

II. The homozygous melanic mm is least fit, and the ho-
mozygous normal nn is fittest. That is α < β < γ. In
Figure 6(b) I illustrate this for α = 0.1, β = 0.3, and
γ = 0.4. These correspond to s1 = -0.555, s2 = +0.090,
and s3 = +0.333. I start with x = 0.999. The proportion
of the m gene rapidly decreases and eventually becomes
extinct.

III. The heterozygous form has the advantage. That is β > α
and β > γ. This case is rather more interesting! Regard-
less of the initial value of m-gene fraction x, the m-gene
fraction eventually settles down to an equilibrium value
xe given by

xe =
β − λ

2β − α − γ
. (14)

If the m-gene fraction is initially higher than this, it
drops to the equilibrium value; if it is initially lower than
this, it rises to the equilibrium value. This presumably
means that if you have a population in which the three
forms exist together for a long time, the heterozygous
form is fitter than the other two. This case is illustrated
in Figure 7, which I calculated for α = 0.2, β = 0.8, and
γ = 0.4. These correspond to s1 = -0.500, s2 = +0.454,
and s3 = -0.111. I started with x = 0.001 and x = 0.999.

IV. The heterozygous form is at a disadvantage. That is
β < α and β < γ. Can you guess what will happen, just
by thinking about it without actually doing the calcula-
tions? (Hint: Reverse the arrow of time!) What happens
is that there is still an equilibrium m-gene fraction, and
it is still given by equation (14)—but it is an unstable
equilibrium! If the m-gene fraction starts ever so slightly
above this equilibrium value, the fraction grows until the
n-gene becomes extinct; and if the m-gene fraction starts
ever so slightly below the equilibrium value, the m-gene
becomes extinct. This case is illustrated in Figure 8,
which I calculated for α = 0.8, β = 0.2, and γ = 0.5.
These correspond to s1 = +0.391, s2 = +0.529, and
s3 = 0.000. I started with x = 0.3333 and x = 0.3334.
Very slight differences in initial conditions result in quite
different outcomes.
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Figure 7: The heterozygous form has the advantage. Re-
gardless of the initial m-gene fraction, high or low, an equi-
librium situation ultimately results.
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Figure 8: No dominance. The heterozygous form is
at a disadvantage. The m-gene fraction goes to zero or
infinity depending on whether its initial value is below
or above a critical value.

Of course we have so far looked at some highly idealized situ-
ations. For example, we have assumed that the selective pres-
sures remain constant generation after generation. If the en-
vironment changes at some time, this poses no particular dif-
ficulty: we can change the values of the selective advantage at
any generation and resume the calculation with these new val-
ues. There is one example of biological significance that is also
particularly amenable to this sort of mathematical calcula-
tion, and that is the study of mimicry. Some butterflies taste
nasty and they are brightly coloured (warning coloration) so
that birds can easily recognize them and leave them alone.
Most tasty insects are cryptically coloured—difficult to find.
But there are a few cheats. Some tasty insects mimic the
bright colours of their horrible-tasting cousins; birds see the
bright colours of the mimics and assume that they taste aw-
ful, so they leave them alone. This mimicry gives the cheat
quite a selective advantage. But the cheat is effective only if

8



the mimic is much rarer than the model. If the cheats are
abundant, birds will not be taken in so easily and will soon
unmask the fraud.

We can construct a plausible mathematical model of this
situation. Let us suppose that there is a gene M for mimicry
and a gene n for non-mimicry. To keep things simple, we’ll
suppose that the gene M is dominant over n (as you already
guessed from the capital and small letters), so that there are
just two forms of the insect—a mimetic form, which can be
either MM or Mn, and a non-mimetic form. At some time,
the fraction of mimetic insects in the population is X and
the fraction of non-mimetic insects is 1 − X. The selective
advantage, we suppose, depends on the value of X, as we
argued in the previous paragraph. Suppose, for example, that

s = −1

2
+ (1 − X)

1
2 . (15)

I have chosen this function quite arbitrarily, but it is at least
plausible. It means that when the mimetic form is very rare
(X very small), it has a distinct advantage (s = +1

2 ), and
when it is common (X close to 1) it is at a decided disad-
vantage (s = −1

2 ). It has neither advantage nor disadvantage
(s = 0) when X = 0.75. I admit that I also chose the function
because it gives a very simple relation between s and x, the
fraction of genes that are M . It is easy to show that

s =
1

2
− x. (16)

Thus in terms of gene fraction (rather than mimetic insect
fraction), s decreases linearly with x, going from +1

2 to −1
2 ,

becoming zero for x = 1
2 . We can anticipate that, whatever

the initial gene fraction, it will either increase or decrease
until it reaches an equilibrium value of +1

2 , when there is
no selection but merely equal predation on mimetic and non-
mimetic forms. The calculation is very easy. We just use
equation (7) as before, but, instead of a constant value of s,
we substitute 1

2 −x. The behaviour is illustrated in Figure 9,
for initial gene fractions of 0.950 and 0.001.
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Figure 9: Complete dominance. The selective advantage of
the melanic form depends upon its relative abundance in the
population.

If you wish, you can further elaborate on these models of
evolution by variation and natural selection and watch the

changes in the population of the moths before your very eyes.
I suppose it goes to show that, whatever subject happens to
interest you, you will probably always find some application
of mathematics to it that will make it even more interesting.

“My life is all arithmetic,” the young businesswoman explains.
“I try to add to my income, subtract from my weight, divide my
time, and avoid multiplying. . . ”

lim
8→9

√

8 = 3.

There are three kinds of mathematicians: those who can count
to three, and those who can’t. . .

Q: How can you tell that Harvard was planned by a mathemati-
cian?

A: The div school is right next to the grad school. . .

Mathematicians never die—they only lose some of their func-
tions.

c©Copyright 2003
Sidney Harris

A mathematician named Haines
told—after wracking his brains—
that he had found
a new kind of sound
that travels much faster than planes.
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Shouting Factorials!

Byron Schmuland†

h Author’s note: This article may use ideas you haven’t
learned yet, and might seem overly complicated. It is not.
But understanding Stirling’s formula is not for the faint of
heart; it requires concentrating on a sustained mathematical
argument over several steps.

Even if you are not interested in all the details, I hope
you will still glance through the article and find something
to pique your curiosity. If you are interested in the details,
but don’t understand something, you are urged to pester your
mathematics teacher for help.

Factorials!

Unbelievably large numbers are sometimes the answers to
innocent looking questions. For instance, imagine that you
are playing with an ordinary deck of 52 cards. As you shuffle
and re-shuffle the deck you wonder: How many ways could
the deck be shuffled? You reason that there are 52 choices for
the first card, then 51 choices for the second card, then 50 for
the third card, etc. This gives a total of

52 × 51 × 50 × · · · × 2 × 1

ways to shuffle a deck of cards. We call this number “52
factorial” and write it as the numeral 52 with an exclamation
point: 52! This number turns out to be the 68-digit monster

806581751709438785716606368564037669752895054408832

77824000000000000,

which means that if everyone on earth shuffled cards from now
until the end of the universe, even at a rate of 1000 shuffles
per second, we couldn’t begin to see all the possible shuffles.
Whew! No wonder we use exclamation marks!

For any positive integer n we calculate “n factorial” by
multiplying together all integers up to and including n, that
is, n! = 1 × 2 × 3 × · · · × n. Here are some more examples of
factorial numbers:

1! = 1, 2! = 2, 3! = 6, 4! = 24,
5! = 120, 6! = 720, 7! = 5040, 8! = 40320,
9! = 362880, 10! = 3628800.

Stirling’s Formula Factorials start off reasonably
small, but by 10! we are already in the millions, and it

† Byron Schmuland is a professor in the Department of Mathe-
matical and Statistical Sciences at the University of Alberta. His E-mail
address is schmu@stat.ualberta.ca. You can also visit his web page at
http://www.stat.ualberta.ca/people/schmu/.

doesn’t take long until factorials are unwieldy behemoths like
52! above. Unfortunately there is no shortcut formula for n!,
you have to do all of the multiplication. On the other hand,
there is a famous approximate formula, named after the Scot-
tish mathematician James Stirling (1692–1770), that gives a
pretty accurate idea about the size of n!:

Stirling’s Formula: n! ≈
√

2πn
(n

e

)n

.

Before we continue, let’s take a moment to contemplate
the fact that n factorial involves nothing more sophisticated
than ordinary multiplication of whole numbers, while Stir-
ling’s formula unexpectedly uses square roots, π (the area of
a unit circle), and e (the base of the natural logarithm). Such
are the surprises in store for students of mathematics.

Here is Stirling’s approximation for the first ten factorial
numbers:

1! ≈ 0.92, 2! ≈ 1.92, 3! ≈ 5.84, 4! ≈ 23.51,
5! ≈ 118.02, 6! ≈ 710.08, 7! ≈ 4980.39, 8! ≈ 39902.39,
9! ≈ 359536.87, 10! ≈ 3598695.62.

You can see that the larger n gets, the better the approx-
imation proportionally. In fact the approximation 1! ≈ 0.92
is accurate to 0.08, while 10! ≈ 3598695.62 is only accu-
rate to about 30,000. But the proportional error for 1! is
(1!−.92)/1! = .0800 while for 10! it is (10!−3598695.62)/10! =
.0083, ten times smaller. This is the correct way to under-
stand Stirling’s formula, as n gets large, the proportional error
(n! −

√
2πn(n/e)n)/n! goes to zero.

Developing approximate formulas is something of an art.
You need to know when to be sloppy and when to be precise.
We will make two attempts to understand Stirling’s formula,
the first uses easier ideas but only gives a sloppy version of the
formula. We will follow that with a more sophisticated attack
that uses knowledge of calculus and the natural log function.
This will give us Stirling’s formula up to a constant.

Attempt 1. To warm up, let’s look at an approximation
for the exponential function. The functions 1 + y and ey

have the same value and the same slope when y = 0, so that
1 + y ≈ ey when y is near zero (either positive or negative).
Applying this approximation to x/n, for any x but with n
much larger than x, gives 1+x/n ≈ ex/n. Now if we take the
(n − 1)st power on both sides, we get the approximation

(

1 +
x

n

)n−1

≈ e(n−1)x/n ≈ ex.

Returning to factorials, we begin with an obvious upper
bound. The number n! is the product of n integers, none
bigger than n, so that n! ≤ nn. With a bit more care, we can
write n! precisely as a fraction of nn as follows:

n! =

(

1 − 1

2

)1 (

1 − 1

3

)2

· · ·
(

1 − 1

n

)n−1

nn.

I won’t deprive you of the pleasure of working out the al-
gebra to confirm that this formula is really correct. Using
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the approximation for the exponential function ex we can
replace each of the factors (1 − 1/k)k−1 by e−1 and arrive
at n! ≈ e (n/e)n. Because of cumulative errors, the formula
e (n/e)n sorely underestimates n!, but it does have the right
order of magnitude and explains where the factor “e” comes
from.

Attempt 2. Our next attempt to get Stirling’s formula
uses the fact that, mathematically, addition is easier to handle
than multiplication. Taking the natural log on both sides of
n! = 1 × 2 × · · · × n, turns the multiplication into addition:
ln(n!) = ln(1) + ln(2) + · · ·+ ln(n). As you might expect, our
warmup problem this time is an approximate formula for the
natural log function. We start with the series expansion

1

2
ln

(
1 + x

1 − x

)

= x +
x3

3
+

x5

5
+

x7

7
+ · · · .

Substitute x = 1/(2j + 1) and rearrange to get

(

j +
1

2

)

ln

(

1 +
1

j

)

− 1

=
1

3(2j + 1)2
+

1

5(2j + 1)4
+

1

7(2j + 1)6
· · · .

Now replacing the sequence of odd numbers 3, 5, 7, . . . by
the value 3 in the denominator makes the result bigger, so we
have the inequality

(

j +
1

2

)

ln

(

1 +
1

j

)

− 1

≤ 1

3

(
1

(2j + 1)2
+

1

(2j + 1)4
+

1

(2j + 1)6
+ · · ·

)

.

The sum on the right takes the form of the famous geometric
series

ρ + ρ2 + ρ3 + · · · =
ρ

1 − ρ
.

On making the replacement ρ = 1/(2j + 1)2, a little algebra
yields

(

j +
1

2

)

ln

(

1 +
1

j

)

− 1 ≤ 1

3

[
1

(2j + 1)2 − 1

]

=
(1)1

12

(
1

j
− 1

j + 1

)

.

All that work was to show that (j + 1/2) ln(1 + 1/j) − 1 is
pretty close to zero. If you are inclined, you could program
your computer to calculate both sides of (1) for various values
of j, just to check that the right hand side really is bigger than
the left. Note that we have an upper bound in (1), instead
of an approximate formula. This means that the values on
the two sides are not necessarily close together, only that the
value on the right is bigger.

You will be relieved to hear that we are finally ready to
return to Stirling’s approximation for n!. We want to ap-
proximate ln(n!) = ln(1) + ln(2) + · · · + ln(n), which is the
area of the first n − 1 rectangles pictured below. The curve

in the picture is ln(x), and it reminds us that ln(1) = 0.

1 2 n − 1 n n + 1. . .

The area of each rectangle is the area under the curve, plus
the area of the triangle at the top, minus the overlap. In other
words, using the definitions below we have rj = cj + tj − εj .

rectangle := rj = ln(j + 1),

curve := cj =

∫ j+1

j

ln(x) dx,

triangle := tj =
1

2
[ln(j + 1) − ln(j)],

overlap := εj =

(

j +
1

2

)

ln

(

1 +
1

j

)

− 1.

The overlap εj is a small sliver shaped region that is barely
visible in the picture, except in the first rectangle. Using the
inequality (1) we worked so hard to establish, we add up on
both sides and see that the infinite series satisfies

∑∞
j=n εj <

1/(12n), for any n = 1, 2, 3, . . . .

To approximate ln(n!) =
∑n−1

j=1 rj , we begin by splitting rj

into parts

ln(n!) =

n−1∑

j=1

cj +

n−1∑

j=1

tj −
n−1∑

j=1

εj .

Since
∑n−1

j=1 cj is an integral over the range 1 to n, and
∑n−1

j=1 tj is a telescoping sum, this simplifies to

ln(n!) =

∫ n

1

ln(x) dx +
1

2
ln(n) −

n−1∑

j=1

εj

= n ln(n) − n + 1 +
1

2
ln(n) −





∞∑

j=1

εj −
∞∑

j=n

εj



 .

Taking the exponential gives

n! = e1−∑∞
j=1 εj

√
n

(n

e

)n

e
∑∞

j=n εj .

Pause to note that this is an exact equation, not approxi-
mate. It gives n! as the product of an unknown constant, the

factor
√

n (n/e)n, and a factor e
∑∞

j=n
εj that converges to 1

as n → ∞. The inequality
∑∞

j=n εj < 1/(12n) then yields the
bounds

C
√

n
(n

e

)n

≤ n! ≤ C
√

n
(n

e

)n

e
1

12n ,

where e
11
12 ≤ C ≤ e. Once we’ve identified C =

√
2π, we get
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√
2πn

(n

e

)n

≤ n! ≤
√

2πn
(n

e

)n

e1/12n

If you’ve made it this far, congratulations! Now you see
why Stirling’s formula works. The part we skipped, to show
that the unknown constant C is actually equal to

√
2π is not

that easy. But we’ve done enough hard work for today, so
let’s just accept this, and look at some other cool properties
of the number n!.

Number of Digits For any x > 0 the formula
d(x) = blog10(x)c+1 gives the number of digits of x to the left
of the decimal point. The funny looking b c tells us to throw
away the fractional part of the number. For moderate sized
factorials we can simply plug this formula into a computer to
see how many digits n! has. For example, d(52!) = 68 and
d(1000000!) = 5565709. But suppose we wanted to find the
number of digits in a really large factorial, say googol facto-
rial? (Googol means ten raised to the power 100 or 10100).
Even a computer can’t calculate googol factorial, so we must
use Stirling’s formula. Let g = 10100, substitute into Stirling’s
formula, and take log (base 10) on both sides to obtain

log10

(√

2πg
(g

e

)g)

≤ log10(g!)

≤ log10

(√

2πg
(g

e

)g

e1/12g
)

.
(2)

Let’s concentrate on the left-side log10(
√

2πg(g/e)g). Using
the logarithm property and the fact that log10(g) = 100, we

simplify this to log10(
√

2π)+50+g(100− log10(e)). The hard
part of this calculation is to find log10(e) to over 100 decimal
places, but the computer is happy to do it for us. Once this
is accomplished we find that

log10

(√

2πg(g/e)g
)

= 99565705518096748172348871081083

39491770560299419633343388554621

68341353507911292252707750506615

682567.21202883 . . . .

When we knock off the fractional part and add 1, we get
d(
√

2πg(g/e)g). We can now find the number of digits
in googol factorial by comparing with the upper bound.
The right hand side log10(

√
2πg(g/e)ge1/12g) of (2) ex-

ceeds the left hand side only by the minuscule amount
log10(e

1/12g) = log10(e)/12g. When this is added to the
fractional part 0.21202883 . . . , the first hundred or so dig-
its after the decimal point are not affected. In other words,
the three logarithms in (2) are so close together that knock-
ing off the fractional part gives the same result. Therefore
d(log10(

√
2πg(g/e)ge1/12g)) = d(

√
2πg(g/e)g), and since d(g!)

is in between, it also must be the same.

Raising 10 to the power of the fractional part
0.21202883 . . . gives us the first few digits of g!, so we con-
clude that googol factorial is g! = 16294 · · · 00000, where the
dots stand in for the rest of the exactly

d(g!) = 99565705518096748172348871081083394917705602

99419633343388554621683413535079112922527077

50506615682568

digits. This explains why no one can or ever will calculate
all the digits of googol factorial. Where would you put it?
A library filled with books containing nothing but digits? A
trillion trillion computer hard drives? None of these puny
containers could hold it. This super-monster has more digits
than the number of atoms in the universe.

Trailing Zeros Looking back, you may notice that 52!
ends with a stream of zeros. For that matter, all the factorials
starting with 5!, have zeros at the end. Let’s try to figure out
how many zeros there will be at the end of n!. This doesn’t
rely on approximate values of n! anymore, more importantly
we need to understand the divisors of n!.

Each zero at the end of n! comes from a factor of 10. For
instance, 10! has two zeros at the end, one of which comes
from multiplying the 2 and the 5.

10! =1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 × 10

=(1 × 3 × 4 × 6 × 7 × 8 × 9) × (2 × 5) × 10

=(36288) × (100).

The fact that 36288 is an even number means that there are
extra factors of 2 that don’t get matched with any 5’s. Since
there is always an excess of 2’s, the number of trailing zeros
in n! is equal to the number of 5’s that go into n!.

Imagine lining up all the numbers from 1 to n to be mul-
tiplied. You will notice that every fifth number contributes a
factor of 5, so the total number of 5’s that factor n! should
be about n/5. Since this isn’t an integer, we knock off the
fractional part and retain bn/5c.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 · · · n
↑ ↑ ↑ ↑

According to this formula, the number of trailing zeros in 10!
is b10/5c = 2, and that checks out. But for 52! the formula
gives b52/5c = 10, when there are really 12 trailing zeros.
What’s going on? The problem is that we forgot to take into
account that the number 25 contributes two factors of 5, and
does 50. That’s where the extra two zeros come from.

Now we modify our formula for the number of trailing zeros
in n! to

z(n) = bn/5c + bn/25c + bn/125c + bn/625c + · · · .

We have anticipated that all multiples of 125 give three factors
of 5, multiples of 625 give four factors of 5, etc. Also note
that if n is less than 25, for instance, then the formula bn/25c
automatically returns a zero.

We can get an upper bound on the number of zeros by
not knocking off the fractional part of n/5j and using the
geometric series

z(n) =

∞∑

j=1

⌊ n

5j

⌋

≤
∞∑

j=1

n

5j
=

n

4
.

This turns out to be pretty close to the right answer. In other
words, the number of trailing zeros in n! is approximately n/4.
For example, the number of trailing zeros in googol factorial
works out to be exactly z(g) = g/4 − 18 or

24999999999999999999999999999999999999999999999999

99999999999999999999999999999999999999999999999982.
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A Generalization of Synthetic
Division

Rohitha Goonatilake†

I. Introduction

In this article, we consider a procedure for division of poly-
nomials. This is an alternative to a previously known process
called long division of polynomials that involves the coeffi-
cients of polynomials. As we know, synthetic division works
only for a divisor of the form x − k. In [1], Donnell showed
that it can also be extended to a divisor of the form xn−k for
n ≥ 2. The purpose of this article is to extend this method to
any polynomial divisor with a unit leading coefficient. This
procedure has many applications; it is particularly important
in factoring and finding the zeros of a polynomial. Several
preliminary topics discussed in this article stem from [2].

Definition 1. Division Algorithm
If p(x) and d(x) are polynomials such that d(x) 6= 0, and the
degree of d(x) is less than or equal to the degree of p(x), then
there exists unique polynomials q(x) and r(x) such that

p(x) = d(x) · q(x) + r(x),

where r(x) = 0 or the degree of r(x) is less than the degree
of d(x). If the remainder r(x) is zero, then we say that d(x)
divides evenly into p(x). In this setting, p(x), d(x), q(x), and
r(x) are respectively called dividend, divisor, quotient, and
remainder.

Remark 1. The Division Algorithm can also be written as

p(x)

d(x)
= q(x) +

r(x)

d(x)
.

The rational expression p(x)/d(x) is called improper because
the degree of p(x) is greater than or equal to the degree of
d(x). On the other hand, the rational expression r(x)/d(x)
is called proper because the degree of r(x) is less than the
degree of d(x). It is also assumed that p(x) and d(x) have no
common factors.

II. Horner’s Method

Horner’s Method is a method of writing a polynomial in
a nested manner. It gives us a method for evaluating poly-
nomials that is very useful with a calculator. Consider the
polynomial,

p(x) = 3x3 + 8x2 + 5x − 7.

† Rohitha Goonatilake is a professor in the Division of Math-
ematics, Department of Natural Sciences, Texas A&M International
University, in Laredo, Texas 78041–1900, USA. His E-mail address is
harag@tamiu.edu.

Synthetic division by (x − k) yields the following:

k 3 8 5 −7
− 3k (3k + 8)k [(3k + 8)k + 5]k
3 3k + 8 (3k + 8)k + 5 [(3k + 8)k + 5]k − 7

Hence, by the remainder theorem, we know that p(k) = [(3k+
8)k + 5]k − 7. In terms of x, we can write

p(x) = 3x3 + 8x2 + 5x − 7 = [(3x + 8)x + 5]x − 7.

This is called Horner’s method of writing a polynomial. It
can be applied to any polynomial by successively factoring
out x from each nonconstant term, as demonstrated in the
following example.

p(x) = 5x4 − 3x3 + x2 − 8x + 7

= (5x3 − 3x2 + x − 8)x + 7 Factor x from first four terms

= [(5x2 − 3x + 1)x − 8]x + 7 Factor x from first three terms

= {[(5x − 3)x + 1]x − 8}x + 7Factor x from first two terms

Before continuing the discussion of this topic any further,
let us describe nested multiplication in a formal setting (so
that it can be translated into a tableau), for a general poly-
nomial p(x) of degree m in Newton’s form. It might be

p(x) = a0 + a1[(x − x0)] + a2[(x − x0)(x − x1)] + · · ·
+ am[(x − x0)(x − x1) · · · (x − xm−1)].

This can be written succinctly as

p(x) = a0 +
m∑

i=1

ai

[i−1∏

j=0

(x − xj)
]

,

where the standard product notation has been used. The
nested form of p(x) is

p(x) =a0 + (x − x0)
{
a1 + (x − x1)

[
a2 + · · · + (x − xm−1)am

]
· · ·

}

=
(

· · ·

{[
am(x − xm−1) + am−1

]
(x − xm−2) + am−2

}
· · ·

+ a1

)

(x − x0) + a0.

Thus, the polynomial p(x) considered before, with all the
xjs equal to zero, takes the nested form

p(x) =
{
· · ·

[
(amx + am−1)x + am−2

]
· · · + a1

}
x + a0,

with appropriate choices of xm−1, xm−2, · · · , x0 for a polyno-
mial of degree m. For the tableau to be described in the next
section, we write the divisor d(x) of degree m with leading
coefficient one in nested form as

d(x) =
(

· · ·
{[

(x− k1)x− k2

]
x− k3

}
x− · · · − km−1

)

x− km.

III. Synthetic Division

As illustrated above, there is a nice shortcut for long divi-
sion of p(x) by polynomials of the form x−k. The shortcut is
called synthetic division and it involves the coefficients of the
polynomial and k. The essential steps of this division tableau
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are performed by using only the coefficients. By the remain-
der theorem, we know that the remainder r(x)|x=k = p(k).
Donnell [1] considered division by a polynomial of the form
xn − k for n ≥ 2. In the extension, we propose synthetic di-
vision of polynomials for any polynomial divisor. We insist
that the leading coefficient of the divisor polynomial d(x) be
1. In the event that the leading coefficient is different from 1,
we divide both dividend p(x) and divisor d(x) by the leading
coefficient of the divisor as required by this division tableau.
It is understood that any divisions under consideration has
this normalization and that the polynomials are written with
descending powers of x. The latter is often referred to as stan-
dard form. We now describe the pattern for synthetic division
of a given polynomial by any polynomial divisor using a care-
fully chosen set of worked examples. A proof of the general
statement of this method is not attempted in this article due
to the notational difficulties it may cause. In fact, such a
proof is not within the scope of this article.

Suppose p(x) is a polynomial of degree n, which is to be
divided by a polynomial divisor d(x) of degree m, where 1 ≤
m ≤ n. This results in a quotient q(x) of degree n − m and
a remainder r(x) of degree m − 1 or less. The key steps of
the procedure are explained below. Some discussions are very
brief as we assume the reader is already familiar with the basic
steps found in synthetic division and those of [2].

Step 1: The n + 1 coefficients of p(x) are arranged in order
of descending powers of x in the top row of the division
tableau. Zeros are used to replace any missing coeffi-
cients of the expansion.

Step 2: k1 is chosen from the nested form. First it is placed
outside to the left of the left extrema column. And for
any kj for j ≥ 2, they are placed outside to the left of
corresponding rows after the sum is computed for each
and every column as j increases. Next, place j number
of dashes (number of dashes correspond to the subscript
of k) directly under first j number of coefficients of p(x).
For k1, bring the first coefficient to be the first sum in
the next row. The dashes are considered to have value 0
in computing this sum. Next, place j +1 dashes directly
under the first j + 1 coefficients of p(x). Bring down the
first j +1 coefficients to be the first j +1 sums in its row.

Step 3: The next step is to multiply each of these j + 1 for
j ≥ 1 sum by kj+2, placing the result of each multipliers
in the next of j + 1, for j > 1 positions to the right.
Omit any product that would go beyond last column of
the tableau.

Step 4: Add the next m (or possibly fewer) coefficients to
these products and place sum in the next row. Continue
this procedure until the bottom row is filled with n + 1
numbers after all divisions are performed in this fashion
for all kj for m ≥ j ≥ 1. This can be easily understood
by looking at the given set of examples.

Example j for any products j - no. of products → or ↓
dropped dropped at level j

1 2 2 − 1 = 1 →
2 2 2 − 0 = 2 ↓
3 2 2 − 1 = 1 →
4 2 2 − 1 = 1 →
5 2, 3 2 − 1 = 1, 3 − 1 = 2 use ↓ and not →
6 2 2 − 0 = 2 ↓
7 2 2 − 0 = 2 ↓
8 2, 3 2 − 1 = 1, 3 − 1 = 2 use ↓ and not →

Remark 2 4 4 − 2 = 2 ↓

Step 5: Finally, the first n−m+1 numbers on the last row
from the left are chosen to be the coefficients of quotient
polynomial q(x). The next m−1 are related to coefficients
of remainder polynomial r(x). Before they are finally ac-
cepted as the coefficients of the remainder polynomial,
they have to be adjusted. The numbers that appear in
the boxes are the coefficients so obtained for the actual
remainder polynomial.

Step 6: The number appearing next to the → is the product
of the leading coefficients of the dividend and all the kjs
for j ≥ 1 in nested form of divisor d(x). This is only done
under limited situations as given in the next step. The
sign ↓ means that the number is simply brought down
to be the coefficient of the remainder. This is due to the
fact that the sum is in question equals 0. The signs ↓ and
→ are used in accordance with the table given in Step 7
with priority given to ↓, whenever both occur.

Step 7: Depending on the number of kjs for m ≥ j ≥ 1, in
the last row of the tableau, addends (of sums) in each row
are subtracted from the number of the level of tableau.
If the number of addends is 1, this subtraction is not
carried out. If j = 2, this is done using the sum of the
addend picked up from the top that amounts to j − 1.
As j increases from 2 to 3, the sum of two addends is
subtracted from the entries of the last row. This step
is carried out for every column from the right. These
numbers as well as their negated sums are underlined for
easy referencing.

Example 1. Divide 2x4 +4x3 − 5x2 +3x− 2 by x2 +2x− 3.
We write the divisor in a nested manner. Thus Horner’s
method applied to the divisor gives

x2 + 2x − 3 = x(x + 2) − 3 ⇒

Note k1 = −2 and k2 = 3.

−2 2 4 −5 3 −2
− −4 0 10 -26

3 2 0 −5 13 −28
− − 6 0 3
2

︸︷︷︸
0

︸︷︷︸
1

︸︷︷︸
13 −25

→ −12 26

1 1

The numbers above the braces give the coefficients of the quo-
tient and those in boxes give the coefficients of the remainder
polynomial. Now we have
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2x4 + 4x3 − 5x2 + 3x − 2

x2 + 2x − 3
= 2x2 + 0x + 1 +

x + 1

x2 + 2x − 3
.

Example 2. Divide x3 − 1 by x2 + x + 1.
We write the divisor in a nested manner. Thus Horner’s
method applied to the divisor gives

x2 + x + 1 = x(x + 1) + 1 ⇒
Note that k1 = −1 and k2 = −1.

−1 1 0 0 −1
− −1 1 -1

−1 1 −1 1 −2
− − −1 1
1

︸︷︷︸
−1
︸︷︷︸

0 −1

↓ 1

0 0

Now, similar to the previous example, we have

x3 − 1

x2 + x + 1
= x − 1 +

0x + 0

x2 + x + 1
.

Example 3. Divide x4 + 3x2 + 1 by x2 − 2x + 3.
We write the divisor in a nested manner. Thus Horner’s
method applied to the divisor gives

x2 − 2x + 3 = x(x − 2) + 3 ⇒
Note that k1 = 2 and k2 = −3.

2 1 0 3 0 1
− 2 4 14 28

−3 1 2 7 14 29
− − −3 −6 −12
1

︸︷︷︸
2

︸︷︷︸
4

︸︷︷︸
8 17

→ −6 -28

2 -11

Now, as before, we have

x4 + 3x2 + 1

x2 − 2x + 3
= x2 + 2x + 4 +

2x − 11

x2 − 2x + 3
.

Example 4. Divide x4 + x3 − x2 + 2x by x2 + 2x.
We write the divisor in a nested manner. Thus, Horner’s
method applied to the divisor gives

x2 + 2x = x(x + 2) + 0 ⇒
Note that k1 = −2 and k2 = 0.

−2 1 1 −1 2 0
− −2 2 −2 0

0 1 −1 1 0 0
− − 0 0 0
1

︸︷︷︸
−1
︸︷︷︸

1
︸︷︷︸

0 0

→ 0 0

0 0

Now, as before, we have

x4 + x3 − x2 + 2x

x2 + 2x
= x2 − x + 1 +

0x + 0

x2 + 2x
.

Example 5. Divide x4+3x3−5x2+6x+10 by x3+x2+x+2.
We write the divisor in a nested manner. Thus Horner’s
method applied to the divisor gives

x3 + x2 + x + 2 = ((x + 1)x + 1)x + 2 ⇒
Note that k1 = −1, k2 = −1 and k3 = −2.

−1 1 3 −5 6 10
− −1 −2 7 -13

−1 1 2 −7 13 −3
− − −1 −2 8

−2 1 2 −8 11 5
− − − −2 −4
1

︸︷︷︸
2

︸︷︷︸
−8 9 1

↓ -7 5

-8 2 6

Now, as before, we have

x4 + 3x3 − 5x2 + 6x + 10

x3 + x2 + x + 2
= x + 2 +

−8x2 + 2x + 6

x3 + x2 + x + 2
.

Example 6. Divide 2x3 − 4x2 − 15x + 5 by (x − 1)2.
We write the divisor in a nested manner. Thus Horner’s
method applied to the divisor gives

x2 − 2x + 1 = (x − 2)x − 1 ⇒
Note that k1 = 2 and k2 = −1.

2 2 −4 −15 5
− 4 0 -30

−1 2 0 −15 −25
− − −2 0
2

︸︷︷︸
0

︸︷︷︸
−17 −25

↓ 30

-17 5

Now, as before, we have

2x3 − 4x2 − 15x + 5

(x − 1)2
= 2x + 0 +

−17x + 5

x2 − 2x + 1
.

Example 7. Divide x3 by x2 − x − 1.
We write the divisor in a nested manner. Thus Horner’s
method applied to the divisor gives

x2 − x − 1 = (x − 1)x − 1 ⇒
Note that k1 = 1 and k2 = 1.

1 1 0 0 0
− 1 1 1

1 1 1 1 1
− − 1 1
1

︸︷︷︸
1

︸︷︷︸
2 2

↓ -1

2 1

Now, as before, we have

x3

x2 − x − 1
= x + 1 +

2x + 1

x2 − x − 1
.
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Example 8. Divide x4 by (x − 1)3.
We write the divisor in a nested manner. Thus Horner’s
method applied to the divisor gives

(x − 1)3 = x3 − 3x2 + 3x − 1 = ((x − 3)x + 3)x − 1 ⇒
Note that k1 = 3, k2 = −3 and k3 = 1.

3 1 0 0 0 0
− 3 9 27 81

−3 1 3 9 27 81
− − −3 −9 -18

1 1 3 6 18 63
− − − 1 3
1

︸︷︷︸
3

︸︷︷︸
6 19 66

↓ -27 -63

6 -8 3

Now, as before, we have

x4

(x − 1)3
= x + 3 +

6x2 − 8x + 3

(x − 1)3
.

This tableau easily works to obtain coefficients of the quo-
tient polynomial q(x) and requires a set of additional steps
prior to identifying the coefficients of remainder polynomial
r(x).

Remark 2. As we see below, the divisor of the form xn − k,
where n ≥ 2, will require fewer steps and easily reduce to
the techniques and related tableaus depicted in [2]. Hence,
the results of this article generalize the standard synthetic
division and its easy extension found in [2]. For example, let
us apply our techniques to divide x5 + 4x3 + 3x2 − 2x + 8 by
x4 − 1.

By Horner’s method, we have kj = 0 for 4 > j ≥ 1 and
k4 = 1. The division tableau is:

0 1 0 4 3 −2 8
− 0 0 0 0 0

0 1 0 4 3 −2 8
− − 0 0 0 0

0 1 0 4 3 −2 8
− − − 0 0 0

1 1 0 4 3 −2 8
− − − − 1 0
1

︸︷︷︸
0

︸︷︷︸
4 3 −1 8

↓ 0 0 0

4 3 -1 8

As a result of all kj = 0 for m > j ≥ 1, the first three steps
are not necessary and the number next to sign →, (if any) is
0. But in this case the only missing entries in the last row
are replaced by ↓ as indicated in the table. For k4 = 1 and
kj = 0 for 3 ≥ j ≥ 1, this reduces to

1 1 0 4 3 −2 8
− − − − 1 0

1
︸︷︷︸

0
︸︷︷︸

4 3 -1 8

Thus, by identifying coefficients of the quotient and the re-
mainder polynomials, we have

x5 + 4x3 + 3x2 − 2x + 8

x4 − 1
= x + 0 +

4x3 + 3x2 − x + 8

x4 − 1
.

This topic has been presented in a course on college al-
gebra. The method of synthetic division gives an easy way
to perform the division of polynomials. The motivation is to
use the method to obtain tableau for any polynomial division.
This generalization of synthetic division can be easily learned,
using the familiar steps of the usual method (tableau). All
of the examples presented here, and many similar ones, can
be done with a minimal amount of calculation. Thus, the
method is a source of many nice exercises for undergraduate
mathematics students for further exploration. As this saves
time, an assignment or a project could be assigned to stu-
dents to experiment with this procedure and to verify them
by themselves using known results. Granted, this may not
provide much motivation to students taking their first math-
ematics course, but the method is an interesting technique
using key idea from the remainder theorem. As such, it is
worthy of consideration for homework assignments, if not for
formal inclusion in the course of college algebra.
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A mathematician is asked by a friend who is a devout Christian:
“Do you believe in one God?”

He answers: “Yes—up to isomorphism.”
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Why Not Use Ratios?

A by Klaus Hoechsmann†A
It was a year ago when last we met to spin this ongoing

geometric yarn. On our way “From Rabbits to Roses,” we had
used a 17th century theorem by Girard Desargues—a dashing
fellow judging by his picture—to convert a Golden Rectangle
(Figure 1) into a Golden Triangle (Figure 2). The former is
easy to construct, and the latter is the main ingredient of the
pentagram, the mathematical backbone of roses, buttercups,
cherry blossoms, etc.

Remember that a rectangle is golden if you are left with
a smaller rectangle of the same shape—the upper grey strip
in Figure 1—after removing a square (shown in lower part of
that figure). From the big golden rectangle, we then made a
triangle by rotating two of the longer sides inward until they
met (as in Figure 2). To track down the angles so produced,
we first turned the smaller golden rectangle through 90 de-
grees, so that it stood in the corner of the lower square, as
shown. Having the same shape as its mother meant that its
diagonal lined up with the maternal one.

��

�

�

b

a

b

Figure 1

��

�

�

b

a

b

Figure 2

The main issue was to show that the slanted red lines re-
mained parallel on the right since they started out that way
on the left. That’s were Desargues jumped in and helped,
and for this installment of our story, the time seemed ripe to
prove his theorem. This was the plan—until the folks from
the Natural Ratio Association phoned in and scolded us for
our lack of patriotism. “Why not use ratios?” they clam-
oured, hinting at boycott action unless we came up with a
very good reason. “In both cases (a + b) : a = a : b, hence
those triangles are similar—bang! No need for fancy French
methods.”

When asked what they meant by a “ratio,” they would in-
variably suggest something like 5 : 9 or 8 : 6 or 37 : 31. One of
them admitted that it could get quite sticky like 1000001 : 7,
but the principle was always the same. “Like counting paving
stones,” he said. A few days later we received an envelope in
the mail from a certain Moctezuma Ray in Waco, Texas. It
contained a sheet of paper with a colourful drawing reminis-

† Klaus Hoechsmann is a professor emeritus at the Univer-
sity of British Columbia in Vancouver, B.C. You can find more
information about the author and other interesting articles at:
http://www.math.ubc.ca/∼hoek/Teaching/teaching.html.

cent of an Aztec head-dress as well as a long text, which began
as follows.

Theorem: Given a triangle ADE, let B and C be points
on the line segments AD and AE, respectively. Then the lines
BC and DE are parallel if and only if the ratios AB : AD
and AC : AE are equal.

The rest of the page contained a detailed proof, which we
leave as an exercise for the reader. It was neatly divided
into two parts: one for “if,” the other for “only if.” Both
were impeccable—and tedious—in content, but attractively
precise in lay-out.

“This man—oops! woman—evidently has not heard of in-
commensurability,” said Karen, our history buff. “If this were
written in Greek, I would date it around 600 B.C.—before the
Pythagoreans, anyway.” David, our trivia master, told Karen
that Moctezuma was a man’s name, and disagreed with the
date on the grounds that they had no colour printers back
then. “Let’s frame it and call it Ray’s Theorem,” he sug-
gested in a mocking tone, shaking his head in disbelief of
Moctezuma’s ignorance. Then he launched his browser to
find the word “incommensurable” on the Internet, while I re-
turned to my desk wondering how to explain it to our Texan
correspondent.

BA D

C

E

Figure 3

Basically, two lengths are “commensurable,” if they can both
be measured exactly with the same yardstick, in other words,
if they can both be covered by a whole number of steps of
the same size, like the line segments AB and AD in Figure 3.
Actually, it is easier to describe it in two dimensions: a rect-
angle has commensurable sides if it can be completely paved
with square tiles of the same size, like the rectangle below.

Figure 4

Practical people believe that
this is always the case—if only
you choose your units cleverly
and small enough. Suppose your
2 by 4 foot steel plate turns
out to be too wide by about
1/16 of an inch and too short
by the same amount. Then you
switch to millimeters and get
611 by 1218. If that is still
not good enough for your boss,
you can always go to microme-
ters, angstroms, or picofeet. The
choices are endless: somewhere
there is a unit that will somehow
do the job.

This was the thinking even in scientific circles—until a
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member of the Pythagorean sect found a pair of lengths that
could never be commensurable. Most scholars say the first
incommensurable pair discovered were the side and diagonal
of a square, but some favour the sides of a golden rectangle.

Indeed, a golden rectangle could never be tiled as shown:
otherwise, you could lop off the upper square and be left with
a rectangle that is still tiled—with fewer tiles of the same
size! This residual rectangle, however, is also golden—so you
could repeat the process again and again. Even if you had
started out with umpteen zillion tiles, these repeated reduc-
tions in their number would finally lead to a dead end. Thus,
if you believe in perfect golden rectangles—remember, we con-
structed one last time—you have to believe in the existence
of incommensurable magnitudes.

This realization struck the ancient scientists like a thunder-
bolt: all their arguments based on ratios were now invalid.
Since no details about their immediate reaction are known,
we have to rely on legends—and they run to extremes. At one
end, we have the tale of a hundred oxen, which Pythagoras
had slaughtered and roasted for a huge feast, to usher in the
New Math. At the other end we have a nasty story of the
hapless author of this “scandal” being pushed overboard to
drown at sea. This is the version approved by the Natural
Ratio Association—with the addition that the drowned wise-
acre was a liar and a cheat.

Pythagoras died at about the time Socrates was born
(around 400 BC), but the sect he founded outlived him by cen-
turies. Based on kindness, truth, and contemplation—with a
particular penchant toward mathematics—it was, of course,
eventually persecuted and outlawed. In Plato’s time, how-
ever, it was still flourishing, and one of its members, Archy-
tas, was a respected philosopher, mathematician, and politi-
cian in Southern Italy. Today he is mainly remembered as
the teacher of the brilliant Eudoxus—one of the most power-
ful minds in that era of mental giants. Though most of his
energy was probably devoted to astronomy, Eudoxus touched
on almost all branches of mathematics—and it was he who
solved the puzzle of incommensurable ratios.

The Eudoxan theory of ra-
tios takes up the entire Book V
of Euclid’s famous “Elements,”
and is applied to geometry from
Book VI onward. The reader
will forgive us for not reproduc-
ing these subtleties in the small
space available here, but we can-
not resist the temptation to lift
the curtain a little bit. While the
faces of Pythagoras and Eudoxus
are hidden in the mists of the
past, Euclid was close enough
to the center of action—bustling
Alexandria, Egypt, a scientific
and cultural Mecca—that the
image on the left may have some
relation to reality. But more in-
teresting than Euclid’s face is his
wily ingenuity. Instead of tack-

ling Ray’s Theorem head-on, he took a detour through a
lemma that, at first glance, seems to have nothing to do with
the theorem, but which is well-adapted to the ratios of Eu-
doxus.

In Book V, he had already proved that two magnitudes are
in the same ratio to a third (a : c = b : c) if and only if they
are equal (a = b). This is not as obvious as it sounds since the

way Eudoxus uses the notion of ratio—which will be spelled
out shortly—is more subtle than Mr. Ray’s. But first let us
see how Euclid argues his way to Ray’s Theorem. From way
back (Book I, 38 to 40) he knows: the lines BC and DE are
parallel if and only if the blue-green area BDC equals the
yellow-green area CBE. Now this appears in a new light:
those two areas must be in the same ratio to the mauve area
ABC. If he could change areas to lengths—i.e., claim

1. the areas ABC and BDC are in the same ratio as the
lengths AB and BD

(of course, the same would hold for AC and CE), he could
conclude that

2. the lines BC and DE are parallel if and only AB is to
BD as AC is to CE.
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Figure 5

Roughly speaking, (1) says “triangular areas of the same
height vary as their bases” and no sane person would
doubt that. But Euclid’s task is different: he has to de-
rive it from first principles, where “vary” means “have the
same ratios”, and “same ratios” has a meaning prescribed
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Figure 6

by Eudoxus. Since names of
points are arbitrary, let us ask
why the areas of CAB and ECB
are in the same ratio as the
lengths CA and EC. Since D is
gone, with all its kith and kin, we
get a much cleaner picture than
above—if, for a moment, you ig-
nore all those extra triangles be-
tween P and Q. They are there
because we’re finally about to re-
veal how Eudoxus solved the rid-
dle of incommensurable ratios.
Note: for commensurable quan-
tities a and b of whatever kind,
you can find natural numbers
n and m such that na = mb.
For instance, if a = CA and
b = EC in the picture from
Waco, Moctezuma would count
n = 5 and m = 8. However,
for incommensurable quantities
a and b, the equation na = mb
breaks down for any pair of nat-
ural numbers n and m. So Eu-
doxus says, in this case, that two
ratios a : b and c : d should be
considered equal (in modern no-
tation, a : b = c : d) if, for all n
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and m, these equations always break down the same way—in
other words, “na exceeds mb” and “nc exceeds md” always
go together. There are m = 7 triangles between C and P ,
all with the same base-length b = EC and hence (by Book I,
ibidem) all with the same area d = ECB; likewise, n = 4 tri-
angles between C and Q with base-length a = CA and equal
areas c = CAB. For (1) to hold à la Eudoxus, mb should
exceed na if and only if md exceeds nc—for any m and n,
not just 7 and 4. In other words (check this carefully): PC
should exceed CQ in length if and only if PCB exceeds CQB
in area. But this is just the opening statement with a much
coarser meaning: “triangular areas of the same height com-
pare like their bases.” This only asks whether one thing is
bigger or smaller than another—not for a relation between
the sizes. It is an easy extension of the same old results from
Book I.

The attentive reader will have noticed that our (2) is not
exactly the same as Ray’s Theorem, which ties the parallelity
of those lines to the equality AB : AD = AC : AE, not (as
we have it) AB : BD = AC : CE. But Euclid can parry that
objection: in Book V, he had already proved that a : b = c : d
is the same as a : (a+ b) = c : (c+ d). Since AD = AB +BD
and AE = AC + CE, this makes our theorem just a minor
variation of Ray’s.

As I was wondering how to say this as smoothly as possible,
David burst out of his office and exclaimed: “Now I get it,
incommensurable ratios are just irrational numbers!” He was
visibly delighted by this insight, and slapped his forehead with
his palm: “I should have twigged on to this as soon as I saw
that picture from Waco.” He further suggested that the Nat-
ural Ratio Association should call itself the Rational Number
Association, but I pointed out that the acronym RNA was
already taken by ribonucleic acid. “I know you must have
good reasons for speaking in riddles, but please listen to the
way I understand it and tell me where I am wrong,” he said,
as he held up Moctezuma’s picture. Then he explained that
since A,B, and D lay on the same line, there would be a vector
equation AD = sAB, for some real number s, and similarly
AE = tAC, for some real number t. If s = t, we could sub-
tract the second equation from the first and get DE = sBC,
hence parallelity of DE and BC. On the other hand, if we
chose an E′ such that AE′ = sAB, we’d have DE′ parallel
to BC, as before, and—since there is only one line parallel to
BC through D—E′ and E would be the same, and so would
s and t.

I was impressed. “What’s
wrong with that?” he demand-
ed to know. Then Karen—
probably the source and inspira-
tion of this argument—emerged
from their shared office to re-
inforce the question. Noth-
ing was wrong, I had to ad-
mit, except that we were hanging
out in different mental worlds.
“You’re putting Descartes before
Dehorce,” I said. They did not
appreciate that feeble pun. “Is
Dehorce the French name for Eu-
clid?” Karen asked and tried to
laugh. But she did have the right
hunch of what was meant. They
had been working in the Carte-
sian plane—so called because it
was invented by René Descartes,
a contemporary of our hero De-
sargues, though much more fa-

mous and always on the run from displeased potentates
(echoes of Pythagoras). The Cartesian plane consists of
“points” that are nothing other than pairs (x, y) of numbers.
You can make 3, 4, 5, or higher dimensional “spaces” from
the same ingredients; so the only thing that’s really real is
your initial pool of numbers—“real” numbers, in the case at
hand.

I offered to show how they related to the ratios of Eudoxus:
“If na exceeds mb, then certainly 10na exceeds 10mb, but
maybe 7na will be enough, or even fewer. That’s how you
get the next term in your decimal expansion.” “Not that
again,” David groaned, “infinite decimal expansions racing—
wham!—right through the Milky Way and beyond, skewering
every galaxy in their path—running on eternally, while we are
supposed to think of them as quietly sitting on the number
line. In school I just accepted this as a figure of speech, but
the more we discuss it now, the flakier it seems.” Nor was
he won over by Cauchy sequences, nested intervals, Dedekind
cuts, and the like: we had been through that before. “It’s the
infinity I don’t understand. I can talk about such things—
even real numbers, as I just did—but I am not really thinking
what I am saying.” He paused for a moment: “Well, I do
have some kind of mental image, but not a precise one—
except in the commensurable case. . .. Whoopee!—at least
now I understand the issue. I should sign up with the NRA,”
upon which he disappeared into his office.

“Would you call that a lack of imagination?” I asked Karen.
“Maybe rather an excess of honesty,” she answered, “David
is one of those people who won’t call a spade a spade, unless
he sees a spade.”

c©Copyright 2003
Sidney Harris

Q: Why do mathematicians never rob banks?
A: They have financial mathematics to do it for them.
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It’s All for the Best:

How Looking for the Best Explanations

Revealed the Properties of Light

by

Judith V. Grabiner†

People who do mathematics and physics are always look-
ing for the best: what is the shortest distance, the quickest
path, the system using the least energy? Why do we do this?
More precisely, how have we scientific types come to believe
that mathematical laws describing the world often maximize
something, or minimize something? I’m going to tell you the
story of how this came to be. And it begins in the first cen-
tury of the Common Era, with Heron of Alexandria. You may
know him as the author of Heron’s formula for the area of a
triangle, or as the inventor of a little steam engine shaped like
a rotating lawn sprinkler. But he did something much more
important.

Heron seems to have been the first to use maximal and
minimal principles to explain something in physics. What
he explained was the equal-angle law of reflection of light.
“Everybody thinks,” he says, “that light travels in straight
lines.” (The Greeks, by the way, thought sight went from the
eye to the object.) How fast is light? Well, we see the stars
as soon as we look up, even though the distance is infinite,
so the rays go infinitely fast. “Well,” Heron says, “all fast-
moving objects travel in straight lines.” Why? To get where
they’re going faster. By reason of its speed, the object tends
to move over the shortest path. And that’s a straight line.

OK, that’s ordinary unimpeded light. What is the
law of reflected light? It was already known that light
is reflected at equal angles. But Heron asks, “why?”
“Same reason,” he says! “Of all possible incident
rays from a given point reflected to a given point, the
shortest path is the one that is reflected at equal an-
gles.” Here’s his diagram and proof: (Catoptrics, 4)

Z E G

D

A

B

H

Heron concludes that it is
in conformity with reason
that light takes the short-
est path. He has deduced
the law of reflection ratio-
nally, from a principle of
economy.

Consider AB a plane
mirror, G the eye, and D
the object of vision. Let
a ray GA be incident
upon this mirror such that
∠EAG = ∠BAD. Let an-

other ray GB also be incident upon the mirror. Draw BD. I
say that

GA + AD < GB + BD.

Draw GE from G perpendicular to AB, and extend GE and

† Judith V. Grabiner is Flora Sanborn Pitzer Professor of Math-
ematics at Pitzer College in Claremont, California, U.S.A. Her E-mail
address is jgrabiner@pitzer.edu. You can also visit her web site at
http://www.pitzer.edu/academics/faculty/grabiner/.

AD until they meet, say at Z. Draw ZB. Now, we know

∠BAD = ∠EAG, and ∠ZAE = ∠BAD

(as vertical angles). Therefore, ∠ZAE = ∠EAG. And since
the angles at E are right angles,

ZA = GA and ZB = GB.

But ZD < ZB + BD and ZD = ZA + AD. We deduce that
GA + AD < GB + BD.

Let us turn now to another ancient mathematician, Pappus
of Alexandria, about 300 C.E., who was interested in prob-
lems like this: of all plane figures with the same perimeter,
which has the greatest area? Pappus introduces his discus-
sion of isoperimetric problems by enlisting an unusual math-
ematical ally: the honeybee. Pappus says, “God gave men
the best and most perfect notion of wisdom in general and
of mathematical science in particular, but a partial share in
these things he allotted to some of the unreasoning animals
as well.” “Now,” he says, “how do bees set up their honey-
combs?” We observe that they keep their honey in clean and
pure ways, and that they divide their combs into hexagons.
Why hexagons? They have contrived this by virtue of a cer-
tain geometrical forethought—the figures must be contiguous
to one another—their sides common, so that no foreign mat-
ter could enter the interstices between them and so defile the
purity of their produce. “Only three regular polygons,” Pap-
pus says, “are capable by themselves of exactly filling up the
space about the same point: the square, the equilateral tri-
angle, and the hexagon.” The hexagon has a larger area than
the square or the triangle with the same perimeter, so the
bees conclude that the hexagon will hold more honey for the
same expenditure of wax used for the perimeters. Thus the
bees have solved what we today call the problem of econom-
ically tiling the plane with regular polygons. “Since we are
smarter than bees,” Pappus continues, “we’ll go on and in-
vestigate more general problems of this type.” For instance,
he says that the circle has the greatest area for figures of the
same perimeter, and the sphere has the largest volume for
solids with the same surface area. These results were proved
in 1884 by H. A. Schwarz.

One more maximal principle comes from the Greeks, this
one cosmological. Why are there so many different kinds of
things in the universe? Here’s Plato’s answer: the universe
contains the maximal amount of being. The historian Arthur
Lovejoy calls this the principle of plenitude. “The amount of
being in the universe is maximal,” says Plato, “because of the
goodness and lack of envy of the creator. The creator exists,
so he makes the universe as much like himself as possible: full
of existing things.” This principle was picked up by various
theologians and philosophers and was unbelievably influential.
For instance, it is the seventeenth-century argument for the
infinite universe and for the proposition that all stars have
inhabited planets.

I could read to you hundreds of later statements influenced
by Plato, Heron, and Pappus about maximum or minimum
principles and economy. Here are four: (1) Olympiodorus,
6th century: “nature does nothing superfluous or any unnec-
essary work.” (2) Robert Grosseteste, 13th century: “nature
always acts in the mathematically shortest and best possible
way.” (3) William of Occam, 14th century, in the doctrine
now known as Occam’s razor: “the simplest explanations are
the best.” And, (4) in the Renaissance, Leonardo da Vinci:
“nature is economical and her economy is quantitative. For
instance, living things eat each other so that the maximum
amount of life can exist from the minimum amount of mate-
rial.”
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All these traditions find their culmination in the 17th cen-
tury explanation of the refraction of light by Pierre de Fermat.
First, recall the law of refraction:

l

R

0

N

i

r

Figure 1: The angles of incidence and refraction.

sin i

sin r
= constant,

what we now call Snell’s law, independently discovered by
Descartes.

Let’s look at Fermat for a minute. As you may know, Fer-
mat anticipated much that later became calculus, including
working out a general method of maxima and minima. As
we read both in calculus textbooks and in physics textbooks,
Fermat’s principle in optics says that when light is refracted
from one medium to another, it takes the path that minimizes
the time.

But Fermat was a mathematician, not a physicist. Between
inventing analytic geometry, methods of maxima and minima,
tangents, areas, famous work in number theory, and—with
Pascal—inventing probability theory, not to mention making
a living as a lawyer, he didn’t do any other physics. So how
did he get involved in optics?

To begin with, Fermat and Descartes independently in-
vented both analytic geometry and methods of finding tan-
gents. Descartes, when he heard about Fermat’s work, re-
sponded with disrespect. Descartes claimed that Fermat’s
tangent method wasn’t general (it was in fact better than
Descartes’), and that Fermat should read Descartes’ Geome-
try to learn what was what. Fermat was annoyed. When he
read Descartes’ work on optics, he was in no mood to be char-
itable. He strongly criticized Descartes’ derivation of Snell’s
law. Descartes imagined light being a mechanical motion of
particles in an ether. “When a ray of light crosses a boundary
from one area to another where the ether has different den-
sity,” Descartes said, “it was like when a ball hits a tennis net.
The component of velocity parallel to the net is unchanged,
but the one perpendicular is changed since it can’t penetrate
the net.” You’d think the light would be slowed down; that’s
what Fermat thought too. But no, according to Descartes’
work, coming into the denser medium, it gets a little kick
from the net. So it’s bent toward the perpendicular.

Fermat thought Descartes’ justification was nonsense, so
he attacked the problem himself. Fermat’s approach was mo-
tivated by a guy who is hardly a household name: Marin
Cureau de la Chambre, who in 1657 wrote about the law
of reflection exactly the way Heron had. He said that na-
ture always acts along the shortest paths. But by path, Fer-
mat did not mean distance. Instead, Fermat used an idea of
Aristotle’s, that velocity in a medium varies inversely as the
medium’s resistance to motion. So for Fermat, the path to be
minimized in refraction is not the sum of the two lines CD
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and DI, but a sum involving multiples of those lines, the mul-
tiples being determined by the ratio M of the resistances. He
constructs I so that the sum CD + DI ·M is minimal, where
CD and DI are the lengths minimizing this quantity. Mini-
mizing this path in fact minimizes the time traveled, although
Fermat, wanting to avoid committing himself to any position
about the yet-unmeasured speed of light, doesn’t say so. In
1662, Fermat applied his own method of maxima and minima
to find conditions on the fastest path. He expected to derive
the true law of refraction—and was astounded that it was the
same Descartes/Snell law! Well, that’s how things are. But
now we know why this is the law: light follows the fastest
path. And Fermat’s explanation of why this must be the law
of refraction helped establish it as an important physical law.

So we see that explaining physical phenomena is explain-
ing, “Why is it like this?” Showing that laws maximize or
minimize something long predates calculus. But of course
calculus makes it much easier and much more natural, as
Leibniz realized. So let’s look at his ideas on the subject.

Leibniz was both a philosopher, who wanted to maximize
and minimize things, and an inventor of the calculus that
allowed him do it very well. In fact, Leibniz called his differ-
ential calculus a new method of maxima and minima. And
Leibniz’s first non-trivial application of his new calculus was
to derive the law of refraction.

Why, for Leibniz, should light follow the shortest path? Not
just because Fermat said so. It is an example of something
much more general in Leibniz’s philosophy. Leibniz’s first
principle is the principle of sufficient reason. Nothing happens
without a reason. “For instance,” he says, “Archimedes used
the principle of sufficient reason to show that a balance with
equal weights at equal distances must not incline to either
side. It leads naturally to symmetry and economy.” But
Leibniz said more: “Every true proposition [about nature] has
an a priori proof; a reason can be given for every truth. The
first decree of God, [is] to do always what is most perfect.”
Leibniz also used Plato’s Principle of Plenitude: “How many
beings must this world contain? ALL possible kinds.” For
Leibniz, this is the best of all possible worlds. What does
he mean by this? The best of all possible worlds is that
in which the quantity of existence is as great as possible.
(Voltaire made fun of him for saying this, but so what?) The
divine will chooses the best world, the one with the greatest
number of things in it, and it is precisely for that reason that
the laws of nature are as simple as possible; that way, God
can find room for the most possible things. Leibniz says,
“if God had made use of other, less simple laws, it would
be like constructing a building of round stones, which leave
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more space unoccupied than that which they fill.” Leibniz’s
philosophical justification for the simplest laws, the maximum
existence, the shortest paths, made people even more excited
about finding such laws.

Back to our original question: HOW did we come to learn
to search for and find these explanations? Philosophical ideas
about God as a rational economist, powerfully reinforced by
examples from geometrical optics and the geometrical insights
of honeybees, and vastly accelerated by the techniques of cal-
culus, have, in the centuries after Leibniz, led to the discovery
of curves of quickest descent, the principle of least action in
physics, to the calculus of variations, and to philosophical
ideas—agree with them or not as you choose—like the idea of
the greatest good for the greatest number and Adam Smith’s
free-market principle that individuals striving to maximize
their profit leads to the most efficient organization of the en-
tire economy.

I think that the successful search for the best and most
economical solution helped reinforce the idea of progress in
science. It also strengthens and reinforces the idea so embed-
ded in our teaching and practice that we cannot imagine that
it was ever otherwise: the idea that mathematics in general,
and calculus in particular, is the best way to model this most
mathematically elegant of all possible worlds.

Principal Sources

1. M. R. Cohen and I. E. Drabkin, Source Book in Greek Science.

2. Arthur Lovejoy, The Great Chain of Being .

3. Michael Mahoney, The Mathematical Career of Pierre de Fer-
mat .

4. Dirk J. Struik, Source Book in Mathematics, 1200–1800 .

As the waters receded and Noah’s ark finally came to rest on top
of Mount Ararat, Noah and his family, along with all the animals,
left the ark.

But after forty days below deck on an overcrowded boat, none of
the animals was in the mood for mating, and Noah worried about
how to repopulate the Earth.

So, he tore down one of the ark’s masts, cut it into pieces, and
built a table out of the logs. Then he told one of the snakes
to perform a lascivious dance on top of the table, while all of
the other animals gathered around it. After a while the snake’s
seductive moves showed an effect: one animal after another started
to sway in the rhythm of the snake’s dance. They began to sneak
away in pairs until the dancing snake and her mate were finally
left all alone. They too disappeared, leaving Noah and his family
overjoyed that the animal population would soon be back on track.

Q: What does this story from the book of Genesis teach us about
math?

A: If you want to go forth and multiply, all you need are a log
table and an adder!

A mathematician and his best friend, an engineer, attended a
public lecture on geometry in thirteen-dimensional space.

“How did you like it?” the mathematician wanted to know after
the talk.

“My head’s spinning,” the engineer confessed. “How can you
develop any intuition for thirteen-dimensional space?”

“Well, it’s not even difficult. All I do is visualize the situation
in arbitrary N -dimensional space and then set N = 13.”

“Students nowadays are so clueless,” the math professor com-
plains to a colleague. “Yesterday, a student came to my office and
wanted to know if General Calculus was a Roman war hero. . . ”

A math professor accepts a new position at a university in an-
other city and has to move. He and his wife pack all their belong-
ings into cardboard boxes and have them shipped off to their new
home. To sort out some family matters, the wife stays behind for
a few more days while her husband leaves for their new residence.
The boxes arrive before the wife rejoins her husband. When they
talk on the phone in the evening, she asks him to count the boxes,
just to make sure the movers haven’t lost any of them.

“Thirty nine boxes altogether,” says the prof on the phone.
“That can’t be,” the wife exclaims.“The movers picked up forty

boxes at our old place.”
The prof counts once again, but again his count only reaches

39. The next morning, the wife calls the moving company and
complains. The company promises to check; a few hours later,
someone calls back and reports that all forty boxes did arrive. In
the evening, when the prof and his wife are on the phone again,
she asks: “I don’t understand it. When you count, you get 39, and
when they do, they get 40. That’s more than strange. . . ”

“Well”, the prof says. “This is a cordless phone, so you can stay
on the line and count with me: zero, one, two, three. . . .”

Q: Do you know any catchy anagram of Banach–Tarksi?
A: Banach–Tarksi Banach–Tarski. . . .

Q: How can you tell when you are dealing with the Mathematics
Mafia?

A: They make you an offer that you can’t understand.

c©Copyright 2003
Sidney Harris
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A. N. Kolmogorov
and His Creative Life

Alexander Melnikov†

In the famous article “The Architecture of Mathematics”
(1948) by Nikolas Bourbaki, there is a note that states with
regret that there isn’t any mathematician, even among those
having the broadest erudition, who is not a stranger in some
areas of the vast World of Mathematics. Andrei Nikolae-
vich Kolmogorov (April 25, 1903–October 20, 1987)∗ ,
being the foremost mathematician of the 20th century, brings
us a real counterexample to this assertion.

His scientific horizon covered almost every area of mathe-
matics. His unique insight and deep understanding resulted
in more than 300 research papers, monographs, and various
textbooks. His creative activities, impregnated by fundamen-
tal ideas and outstanding results, initiated several completely
new areas of mathematical investigation.

The list of the areas affected by his contributions includes
the theory of sets, trigonometric and orthogonal series, mea-
sure and integration theory, mathematical logic, topology and
homology theory, celestial mechanics, approximation theory,
turbulence, ergodic theory, superposition of functions, infor-
mation theory, functional analysis and above all—probability
theory, which was transformed by Kolmogorov into real math-
ematical science. However, his interests were not limited only
to mathematics. He also exhibited interests in areas of appli-
cations to biology, geophysics, statistical control of produc-
tion, ballistics theory, and even the theory of poetry, where
his originality and penetrating thoughts made permanent im-
pact.

His collected works are divided into two volumes (Mathe-
matics and Mechanics1 and Theory of Probability and Math-
ematical Statistics2). These two titles reflect the fact that
our vast mathematical world is divided into two parts, which

† Alexander Melnikov is a professor in the Department of Math-
ematical and Statistical Sciences at the University of Alberta. His web
site is http://www.math.ualberta.ca/Melnikov A.html and his E-mail
address is melnikov@ualberta.ca.

∗ This article is written to commemorate the 100th anniversary of
A.N. Kolmogorov.

1 Published by Nauka, Moscow, in 1985.
2 Published by Nauka, Moscow, 1986. English translation of the Kol-

mogorov’s collected works was published by Kluwer Publishing House.

can be classified as the deterministic and random phenomena
kingdoms. Kolmogorov was like a trailblazer in both king-
doms. He discovered many unexplored regions and filled them
with new exciting ideas. He put forward an ambitious pro-
gram for a simultaneous and parallel study of the complexity
of deterministic phenomena and the uncertainty of random
phenomena, which practically dominated his whole life. The
full value of his work is still being realized and explored today.

A.N. Kolmogorov was born on April 25, 1903 in the town
Tambov in Russia. His father—Nikolai Kataev, a son of
a clergyman working as an agronomist, and his mother—
Mariya Yakovlevna Kolmogorova, were never married. He
was named after his grandfather, Yakov Stepanovich Kol-
mogorov instead of his own father. The mother tragically
died in childbirth at Kolmogorov’s birth, which happened
while she was travelling back home from Crimea. To make
things worst, Kolmogorov’s father practically abandoned his
child and was never involved in his upbringing. The sister of
his mother, Vera Yakovlevna Kolmogorova, took the respon-
sibility for his care. This educated and free thinking woman,
whom A.N. Kolmogorov always treated as his real mother,
passed to her nephew an independence of opinion, the desire
to understand rather than memorize, a disapproval of lazi-
ness, a despise of poorly performed tasks, a high sense of
responsibility, and the aspiration to face difficult challenges.
The fact that Kolmogorov’s family originated from nobles,
caused additional complications in the years following, due to
the Russian revolution.

A.N. Kolmogorov spent his youth in the family estate in
Tunoshna. After finishing school, he worked briefly as a
conductor on the railway. During his teenage years, besides
mathematics, his interests included Russian history. He en-
rolled at Moscow University in the autumn of 1920. At that
time mathematics was not his greatest passion. He studied
various other subjects including metallurgy and in particular
history. He even wrote a serious treatise on the 15th century
history of the Russian city Novogrod. One of the well-known
anecdotes describes Kolmogorov’s history teacher explaining
to him that “maybe in mathematics one proof is considered
to be sufficient, however in history it is preferable to have at
least ten proofs!”

The first creative period in the Kolmogorov’s life as a math-
ematician was greatly influenced by his teachers: Professor
Stepanov, who directed a seminar on trigonometric series,
and Professor Lusin—his supervisor. At that time, in 1922,
when Kolmogorov was just a 19-year-old undergraduate stu-
dent, he discovered the famous example of a Fourier series
that is almost everywhere divergent. This truly surprising
result still highlights the depth of his ideas and his profound
geometrical intuition. Nowadays, every textbook on the the-
ory of trigonometric and orthogonal series is bound to include
Kolmogorov’s example.

Kolmogorov’s interests in probability theory originated in
1924, and since then his authority has been considered to be
of the greatest importance in that branch of mathematics.
In 1924–1928, he succeeded in finding necessary and suffi-
cient conditions for the convergence of series of independent
random variables and the law of large numbers, one of the
main statements of classical probability theory. He gradu-
ated in 1925, but persisted to stay at Moscow University for
four more years as a “research student.” However, he was
forced to conclude his studies when stricter rules regulating
the duration of the enrollment at the university were intro-
duced in 1929. Kolmogorov’s difficulties finding a new place
to research were resolved by Aleksandrov, who secured for
him a vacant position in the Institute of Mathematics and
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Mechanics at Moscow University.

During the years 1929–1933, Kolmogorov worked on mea-
sure theory with the purpose of establishing a solid basis for
probability theory, which resulted in Kolmogorov’s classical
monograph “Fundamental Concepts of Probability Theory.”
This book settled not only new directions in the development
of probability theory as a branch of mathematics (which was
one of the famous Hilbert’s Problems presented at the World
Congress of the Mathematicians in 1900), but it also laid the
foundations for the creation of the theory of random pro-
cesses. Other famous concepts of Kolmogorov in this area
were presented in his remarkable paper “Analytical Methods
in Probability Theory” (1931). This work paved the road
to the modern theory of Markov processes. The story tells
that some of this research was done during a boat trip on
the Volga river during the summer of 1929. Kolmogorov and
Alexandrov rented a small boat and camping equipment from
the “Society for Proletarian Tourism and Excursions,” which
was created for the purpose of promoting active living among
workers in the Soviet Union. During this trip they covered
about 1300 kilometers staying in secluded idyllic surround-
ings, sunbathing, swimming and doing mathematics.

In 1931 Kolmogorov was hired as a professor at Moscow
University, and from 1937 he held the chair of theory of prob-
ability. Kolmogorov always maintained a very active lifestyle
that included skiing, rowing, and long excursions on foot—
on average about 30 kilometers. He loved swimming in the
river, especially in the early spring when the snow and ice was
just beginning to melt. His physical fitness was matched by
his enormous productivity. During the decade preceding the
Second World War, Kolmogorov published more than sixty
papers on probability theory, mathematical statistics, topol-
ogy, projective geometry, theory of functions, mathematical
logic, and mathematical biology.

Painting of Kolmogorov
by his former student
Dmitrii Gordeev

It was during this period
that Kolmogorov made signifi-
cant contributions to homology
theory. He also constructed an
example of an open map of a
compact set onto a compact set
of higher dimension. His atten-
tion was also attracted by the
mechanics of turbulence, that is,
the irregular pulsations of ve-
locity, pressure, and other hy-
drodynamical quantities occur-
ring in flows of fluids or gases.
Kolmogorov developed a rigor-
ous statistical approach to pro-
vide a mathematical description
of such flows and in 1941 for-
mulated his most famous (and
still unproven) conjecture in this
area, known as the Two-Thirds
Law. It states that in every tur-
bulent flow, the mean square dif-
ference of the velocities at two
points a distance r apart is pro-
portional to r2/3.

His interests touched every
branch of science. He wrote about the growth of crystals,
astronomy, and even genetics. One of his research papers
brought him into a confrontation with academician T.D. Ly-
senko. Lysenko denied the existence of genes, claiming that
evolution occurred because organisms inherit characteristics
that have been adapted by their ancestors. Lysenko’s the-

ory was denounced by the scientific community as completely
wrong. Kolmogorov, armed with scientific evidence coura-
geously opposed Lysenko’s views and supported Mendel’s the-
ory.

The post-war period in Kolmogorov’s scientific life can be
characterized by two words: harmony in diversity. Kol-
mogorov was working on an unusually large spectrum of top-
ics: probability theory, classical mechanics, ergodic theory,
the theory of functions, information theory, and algorithm
theory. For him, these subjects, seemingly remote and un-
related, were all interconnected by completely unexpected
links. This characteristic of Kolmogorov’s understanding is
perfectly illustrated by his remarkable works, written in the
1950’s, on the theory of dynamical systems. He was moti-
vated by the problem of three and more bodies, going back
to Newton and Laplace. In particular, this problem is related
to explaining the observations of the so-called quasiperiodic
motions of small planets.

Kolmogorov in his
Moscow office

Kolmogorov solved this im-
portant problem for most of the
initial conditions. In following
decades, further application of
his theory made it possible to
solve a variety of other prob-
lems. Later, the method of
Kolmogorov was improved by
Arnold and Moser and now is
known as the KAM-theory.

In 1955, Kolmogorov’s inter-
ests turned to information the-
ory and subsequently, to the
13th Hilbert problem, which pos-
tulated that certain continuous
functions of three variables can-
not be represented as composi-
tions of continuous functions of
two variables. He obtained the
most unexpected result: every

continuous function of any number of variables can be rep-
resented as a composition of continuous function of three
variables. Thus, Hilbert’s problem was reduced to a prob-
lem of representing functions on universal trees in three-
dimensional space. This last problem was solved later, under
Kolmogorov’s supervision, by his student—Arnold. Finally,
Kolmogorov showed that any continuous function can be rep-
resented as a composition of continuous functions of a single
variable and addition.

Kolmogorov with his stu-
dents

In the 60’s Kolmogorov un-
dertook a reconstruction of in-
formation theory based on algo-
rithms. He created a new field
of mathematics—algorithmic in-
formation theory. Kolmogorov’s
theory states that among all
possible algorithmic methods of
description, there exist optimal
ones with the smallest complex-
ity of its objects.

Mathematical logic (in the broad sense, including the the-
ory of algorithms and the foundations of mathematics) was
his first and last love. In 1925, he published a paper on the
Law of the Excluded Middle, which has forever become a
golden foundation of mathematical logic. This was the first
time intuitionistic logic had been systematically researched.
With the help of so-called immersion operations (known now
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as “Kolmogorov Operations”), he proved that the application
of the Law of the Excluded Middle cannot lead to contradic-
tions. This work, together with the paper published in 1932,
made it possible to treat intuitionistic logic as a constructive
logic.

A.N. Kolmogorov present-
ing his lecture

In 1931, Kolmogorov became a
Professor at Moscow State Uni-
versity, and in 1939, he was
elected as Academician of the
USSR Academy of Sciences. He
paid special attention to the
training of young scientists and
was highly successful in recruit-
ing, among undergraduates and
graduates, talented young peo-
ple fascinated by science. Kol-
mogorov tried to create a group
of research students who would
be in a constant state of scien-
tific excitement and continuous
research. For all Kolmogorov’s
students, the years of graduate
and post-graduate studies were
unforgettable. Their involve-
ment in scientific research was
filled with reflections on the role
of science. It was also a time of

realization and growing faith in the inexhaustible creative
power of the human mind.

Another painting of
Kolmogorov by Dmi-
trii Gordeev, with the
inscription: “Dream of
a second and do it.”

Above all, Kolmogorov tried to
arouse in his students general cul-
tural interests in visual arts, archi-
tecture, literature, and even sports.
He also created a special high school
in Moscow State University: Board-
ing School 18, or simply “Kol-
mogorov School.” The students of
this prestigious school systemati-
cally took the first places on Rus-
sian and International Mathematics
and Physics Olympiads. He devoted
much of his time to education and
improving the teaching of mathe-
matics in the former Soviet Union.

The list of Kolmogorov’s students
is extremely large and impressive.
Below, we list only those who were
elected to different Academies of
Sciences:

Arnold (Dynamical Systems)
Bol’shev (Mathematical Statistics)
Borovkov (Probability Theory and
Mathematical Statistics)
Gelfand (Functional Analysis)
Gnedenko (Probability Theory)
Maltsev (Algebra and Mathematical Logic)
Mikhalevich (Cybernetics)
Millionshchikov (Mechanic and Applied Physics)
Monin (Turbulence and Oceanology)
Nikolskii (Theory of Functions)
Obukhov (Turbulence and Physics of the Atmosphere)
Prokhorov (Probability Theory)
Sevastyanov (Probability Theory)
Shiryaev (Probability Theory and Stochastic Processes)
Sinai (Probability Theory and Dynamical Systems)
Sirachdinov (Probability Theory)

In Moscow State University, Kolmogorov created the De-
partment of Probability Theory, the Department of Math-
ematical Statistics, and the Department of Mathematical
Logic. At the Steklov Mathematical Institute of the Russian
Academy of Sciences, he created the Department of Proba-
bility Theory and Mathematical Statistics.

His scientific services were highly valued both in his coun-
try and abroad. Kolmogorov was awarded many prestigious
awards and prizes in the USSR. More than twenty scientific
organizations have elected him as a member (Paris Academy
of Sciences, London Royal Society, USA National Academy,
etc.)

I was very lucky to know A.N. Kolmogorov in person, to
whom I was introduced by my supervisor and his former
student—A. N. Shiryaev. Later, when I became a member
of the Department of Mathematical Statistics at the Steklov
Institute of Mathematics, I had an opportunity to work under
his direction. As the chair of the Department, he inspired and
motivated people to be devoted in their work, for the sake of
scientific research. Visiting him occasionally in his apartment
in the main building of the Moscow State University, gave
me exceptional opportunities to discuss scientific and other
topics with this amazing person. We also listened to classi-
cal music and read poetry. He loved to work in his country
house near Moscow, called “Komarovka,” whose ownership he
shared with P. S. Alexandrov. During the last years of his life,
he spent most of his time in Moscow, unable to visit his much-
loved house. Now, due to the efforts of A. N. Shiryaev, this
house has been transformed into the Kolmogorov-Alexandrov
memorial, which is sometimes open to research visitors from
the Steklov Institute of Mathematics and Moscow State Uni-
versity

Andrei Nikolaevich Kolmogorov died on October 20, 1987
and was buried at the Central Moscow Cemetery “Novode-
vichye.” The whole life of A.N. Kolmogorov was an unparal-
leled feat in the name of science.

c©Copyright 2003
Sidney Harris
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“Quickie” Inequalities

A Murray S. Klamkin†A

“Quickie” problems first appeared in the March 1980 is-
sue of Mathematics Magazine. They were originated by the
late Charles W. Trigg, a prolific problem proposer and solver
who was then the Problem Editor. Many of the first good
Quickie proposals were due to the late Leo Moser (who in-
cidentally was a member of the University of Alberta Math-
ematics Department and subsequently its chairman). These
Quickie problems are even now still a popular part of the jour-
nal. Also Quickies have proliferated to the problem sections
of Crux Mathematicorum, Math Horizons, SIAM Review and
Mathematical Intelligencer (unfortunately, no longer in the
latter two journals).

Trigg noted that some problems will be solved by laborious
methods but with proper insight1 may be disposed of with
dispatch. Hence the name “Quickie”.

The probability that two random numbers are equal is
zero. It follows that there are more inequalities than equa-
tions. Consequently, the study of inequalities are important
throughout mathematics. In past issues of π in the Sky , De-
cember 2001, September 2002, Professor Hrimiuc has pro-
vided some good notes on inequalities and we shall be refer-
ring to some of them.

Here we illustrate 16 Quickie inequalities and after each
one we include for the interested reader an exercise that can
be solved in a related manner.

Our first example will set the stage for our Quickie Inequal-
ities.

1. There have been very many derivations published giving
the formulas for the distance from a point to a line and a
plane. Here is a Quickie derivation for the distance from the
point (h, k, l) to the plane ax + by + cz + d = 0 in E

3 . Here
we want to find the minimum value of [(x− h)2 + (y − k)2 +
(z − l)2]1/2 where (x, y, z) is a point of the given plane. By
Cauchy’s Inequality,

[(x − h)2 + (y − k)2 + (z − `)2]1/2[a2 + b2 + c2]1/2

≥ |a(x − h) + b(y − k) + c(z − `)|
or

min[(x − h)2 + (y − k)2 + (z − `)2]1/2

= |ah + bk + c + d|/[a2 + b2 + c2]1/2.

Exercise. Determine the distance from the point (h, k) to
the line ax + by + c = 0.

† Murray S. Klamkin is a professor emeritus at the University of
Alberta

1 and appropriate knowledge-MSK

2. KöMaL problem F. 3097. A convex quadrilateral ABCD
is inscribed in a unit circle. Its sides satisfy the inequality
AB · BC · CD · DA ≥ 4. Prove that ABCD is a square.

B A

D

C

2α
2β 2γ

2δ

Let the angles subtended by the four sides from the center
be 2α, 2β, 2γ, and 2δ (see figure above). Then AB = 2 sin α,
BC = 2 sin β, CD = 2 sin γ and CD = 2 sin δ where α + β +
γ + δ = π, π > α, β, γ, δ > 0. Since ln(sin x) is concave,

ln(sinα) + ln(sinβ) + ln(sin γ) + ln(sin δ) ≤ 4 ln
(

sin
π

4

)

or AB · BC · CD · DA ≤ 4. Hence the product is exactly 4
and α = β = γ = δ = π

4 so ABCD is a square.

Exercise. Of all convex n-gons inscribed in a unit circle,
determine the maximum of the product of its n sides.

3. KöMaL problem F. 3238. Prove that the inequality

√

a2 + (1 − b)2 +
√

b2 + (1 − c)2 +
√

c2 + (1 − a)2 ≥ 3
√

2

2

holds for arbitrary real numbers a, b, c.
By Minkowski’s Inequality, the sum of the three radicals is

grater or equal than
√

(a + b + c)2 + (3 − a − b − c)2. Then
by the power mean inequality or else letting a + b + c = x,
the expression under the radical is 2(x − 3/2)2 + 9/2, so the

minimum value is 3
√

3
2 .

Exercise. Determine the minimum value of

{x3 + (c − y)3 + a3}1/3 + {y3 + b3 + (d − x)3}1/3,

where a, b, c, d are given positive numbers and x, y ≥ 0.

4. Determine the maximum and minimum z coordinates of
the surface

5x2 + 10y2 + 2z2 + 10xy − 2yz + 2zx − 8z = 0 in E
3.

One method would be to use Lagrange Multipliers. Another
more elementary method would be to use discriminants of
quadratic equations since if z = h is the maximum, the inter-
section of the plane z = h with the quadric must be a single
point. Even simpler is to express the quadric that is an ellip-
soid as a sum of squares, i.e., (2x+y)2+(x−y+z)2+(z−4)2 =
16. Hence max z = 8 and min z = 0.

Exercise. Determine the maximum value of y2 and z2 where
x, y, z are real and satisfy

(y − z)2 + (z − x)2 + (x − y)2 + x2 = a2.

5. Let ar = (br + br+1 + br+2)/br+1 where b1, b2, . . . , bn > 0
and br+n = br. Determine the minimum value of

3
√

a1 + 3
√

a2 + · · · + 3
√

an.
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Even more generally, let

xj = x1j + x2j + · · · + xmj , j = 1, 2, · · · , n,

where all xij > 0 and
n∏

j=1

xij = Pn
i , i = 1, 2, · · · , m. Then

S ≡ r
√

x1 + r
√

x2 + · · · + r
√

xn ≥ n r
√

P1 + P2 + · · · + Pm.

We first use the Arithmetic–Geometric Mean Inequality to
get

S ≥ n(x1x2 · · ·xn)1/rn.

Then applying Holder’s Inequality we are done. There is
equality if and only if xij = xjk for all i, j, k.

The given inequality corresponds to the special case where
r = m = 3, P1 = P2 = P3 = 1, so that the minimum value is
n 3
√

3.

The inequalities here are extensions of problem #M1277,
Kvant, 1991, which was to show that

n∑

i=1

{ai + ai+1)/ai+2}1/2 ≥ n
√

2.

Exercise. Gy. 2887, KöMal. The positive numbers a1, a2,
. . . , an add up to 1. Prove the following inequality:

(1 + 1/a1)(1 + 1/a2) · · · (1 + 1/an) ≥ (n + 1)n.

6. If a, b, c are sides of a triangle ABC and R1, R2, R3 are the
distances from a point P in plane of ABC to the respective
vertices A, B, C. Prove that

aR2
1 + bR2

2 + cR2
3 ≥ abc.

This is a polar moment of inertia inequality and is a special
case of the more general inequality

(x~A + y~B + z~C)2 ≥ 0,

where ~A, ~B, ~C are vectors from P to the respective vertices
A, B, C. Expanding out the square, we get

x2R2
1 + y2R2

2 + z2R2
3 + 2yz~B · ~C + 2zx~C · ~A + 2xy~A · ~B.

Since 2~B · ~C = R2
2 + R2

3 − a2, etc., the general polar moment
of inertia inequality reduces to

(x + y + z)(xR2
1 + yR2

2 + zR2
3) ≥ yza2 + zxb2 + xyc2.

Many triangle inequalities are special cases since x, y, z are
arbitrary real numbers. In particular by letting (x, y, z) =
(a, b, c), we get our starting inequality. Letting P be the cir-
cumcenter and x = y = z, we get 9R2 ≥ a2 + b2 + c2 or
equivalently sin2 A + sin2 B + sin2 C ≤ 9

4 .

Exercise. Prove that

aR2R3 + bR3R1 + cR1R2 ≥ abc.

7. Prove the identity

u(v − w)5 + u5(v − w) + v(w − u)5 + v5(w − u)

+w(u − v)5 + w5(u − v) = −10uvw(u − v)(v − w)(w − u),

and from this obtain the triangle inequality

aR1(a
4 +R4

1)+ bR2(b
4 +R4

2)+ cR3(c
4 +R4

3) ≥ 10abcR1R2R3

(with the same notation as in Problem 6).

The identity is a 6th degree polynomial. The left hand side
vanishes for u = 0, v = 0, w = 0, u = v, v = w, and w = u.
Hence the right hand side equals kuvw(u− v)(v−w)(w− u),
where k is a constant. On comparing the coefficients of uv3w2

on both sides, k = −1.

Now, let u, v, w denote complex numbers representing the
vectors from the point P to the respective vertices A, B, C.
Taking the absolute values of the both sides of the identity
and using the triangle inequality |z1 + z2| ≤ |z1| + |z2|, we
obtain the desired triangle inequality.

Exercise. Referring to Problem 6, prove that

aR1R
′
1 + bR2R

′
2 + cR3R

′
3 ≥ abc, where R′

1, R
′
2, R

′
3

are the distances from another point Q to the respective ver-
tices A, B, C.

8. Determine the maximum and minimum values of
x2 + y2 + z2 subject to the constraint x2+y2+z2+2xyz = 1.

Since it is known that cos2 α + cos2 β + cos2 γ +
2 cos α cos β cos γ = 1 is a triangle identity, we let x = cosα,
y = cosβ, and z = cos γ where α + β + γ = π and π ≥ α,
β, γ ≥ 0. Clearly the maximum of cos2 α + cos2 β + cos2 γ
is 3 and is taken on for (x, y, z) = (1, 1,−1) and permutations
thereof. For the minimum (using the above),

cos2 α + cos2 β + cos2 γ = 3 − (sin2 α + sin2 β + sin2 γ) ≥ 3

4
.

Exercise. Determine the maximum of

{
n∑

i=1

xi

}






n∑

j=1

√

a2
i − x2

i






,

where ai ≥ xi ≥ 0.

9. Problem # 2, Final Round 21st Austrian Mathematical
Olympiad. Show that for all natural numbers n > 2,

√

2
3
√

3
4
√

4 · · · n
√

n < 2.

Here we get a better upper bound. If P denotes the left
hand side, then

lnP =
ln 2

2!
+

ln 3

3!
+ · · · + lnn

n!
.

27



Since
lnx

x
is a decreasing function for x ≥ e,

lnP <
ln 2

2!
+

ln 3

3

{
1

2!
+

1

3!
+

1

4!
+ . . .

}

=
ln 2

2!
+

ln 3

3
(e − 2) ≈ 1.7592.

Exercise. Determine a good lower bound for P .

10. Prove that for any distinct real numbers a, b,

eb − ea

b − a
> e

b+a
2 .

This is a special case of the following result due to
J. Hadamard [1]: If a function f is differentiable, and its
derivative is an increasing function on a closed interval [r, s],
then for all x1, x2 ∈ (r, s) (x1 6= x2), then

∫ x2

x1

f(x)dx

x2 − x1
> f

{
x2 + x1

2

}

.

Letting f(x) = ex, we get the desired result.

Exercise. Prove that

eb2 − ea2

> (b2 − a2)e
(b+a)2

4 .

11. Prove that

cosh(y−z)+cosh(z−x)+cosh(x−y) ≥ cosh x+cosh y+cosh z

where x, y, z are real numbers whose sum is 0.

Since cosh x = cosh(y + z), etc., the inequality can be
rewritten as

(i) sinh y sinh z + sinh z sinh x + sinh x sinh y ≤ 0.

Since (i) is obviously valid if at least one of x, y, z = 0, we can
assume that xyz 6= 0 and x, y > 0. Since z = −(x + y), (i)
becomes csch x + csch y ≥ csch(x + y) for all x, y > 0. This
follows immediately since csch t is a decreasing function for
all t > 0.

Exercise. Prove that

v

w
+

w

v
+

w

u
+

u

w
+

u

v
+

v

u
≥ u +

1

u
+ v +

1

v
+ w +

1

w

where u, v, w > 0 and uvw = 1.

12. It is known and elementary that in a triangle, the longest
median is the one to the shortest side and the shortest median
is the one to the longest side. Determine whether or not the
longest median of a tetrahedron is the one to the smallest
area face and the shortest median is the one to the largest
area face.

Let the sides of tetrahedron PABC be given by PA = a,
PB = b, PC = c, PC = d, CA = e, and AB = f . The

median mp from P is given by |~A+~B+~C|
3 where ~A, ~B, ~C are

vectors from P to A, B, C respectively. Then

9m2
p = |~A + ~B + ~C|2 = 3(a2 + b2 + c2) − (d2 + e2 + f2)

and similar formulas for the other medians. It now follows
that 9m2

a − 9m2
b = 4(a2 + f2)− 4(b2 + e2). It is now possible

to have ma = mb with their respective face areas unequal, so
that the longest median is not one to the smallest face area.
The valid analogy is that the longest median is the one to
the face for which the sum of the squares of its edges is the
smallest, and the shortest median is the one to the face for
which the sum of the squares of its edges is the largest.

Exercise. Prove that the four medians of a tetrahedron are
possible sides of a quadrilateral.

13. a, b, c, d are positive numbers such that a5+b5+c5+d5 =
e5. Can an + bn + cn + dn = en for any number n > 5?

Let St = xt
1 + xt

2 + · · · + xt
n where the xi ≥ 0. A known

result [2] is that the sum St of order t, defined by St = (St)
1/t

decreases steadily from min xi to 0 as t increases from −∞
to 0−, and decreases steadily from ∞ to max xi as t increases
from 0+ to +∞. Consequently, there is no such n.

Exercise. Prove that ST ≤
n∑

i=1

α1Sti
for arbitrary ti > 0 and

for α1 > 0,

n∑

i=1

α1 = 1 and T =

n∑

i=1

α1ti.

14. Prove that

xt+1

yt
+

yt+1

zt
+

zt+1

xt
≥ x + y + z

where x, y, z > 0 and t ≥ 0.

Let

F (t) =

[

y
(

x
y

)t+1

+ z
(

y
z

)t+1
+ x

(
z
x

)t+1
] 1

t+1

[x + y + z]
1

t+1

.

Then by the Power Mean Inequality, F (t) ≥ F (0) = 1.

Exercise. Prove more generally that

xt+1

at
+

yt+1

bt
+

zt+1

ct
≥ (x + y + z)t+1

(a + b + c)t
,

where x, y, z, a, b, c > 0 and t ≥ 0.

15. Determine the maximum value of

S = 3(a3 + b2 + c) − 2(bc + ca + ab),

where 1 ≥ a, b, c ≥ 0.

Here, S ≤ 3(a + b + c) − 2(bc + ca + ab). Since this latter
expression is linear in each of a, b, c, its maximum value is
taken on for a, b, c = 0 or 1. Hence the maximum is 6−2 = 4.

Exercise. Determine the maximum value of

S = 4(a4 + b4 + c4 + d4) − (a2bc + b2cd + c2da + d2ab)

−(a2b + b2c + c2d + d2a),

where 1 ≥ a, b, c, d ≥ 0.

16. Determine the maximum and minimum values of

sin A + sin B + sin C + sin D + sin E + sin F,
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where A + B + C + D + E + F = 2π and π
2 ≥ A, B, C, D,

E, F ≥ 0.

Here we get a quick solution by applying Karamata’s In-

equality [3]. If two vectors ~A and ~B having n components,
ai and bi, are arranged in non-increasing magnitude are such
that

k∑

i=1

ai ≥
k∑

i=1

bi, k = 1, 2, . . . , n − 1,

and
n∑

i=1

ai =

n∑

i=1

bi,

we say that ~A majorizes ~B and write ~A � ~B. We then have
for a convex function F (x) that

F (a1) + F (a2) + · · · + F (an) ≥ F (b1) + F (b2) + · · · + F (bn).

If F (x) is concave, the inequality is reversed.

Since sin x is concave in [0, π/2], and

(π

2
,
π

2
,
π

2
,
π

2
, 0, 0

)

� (A, B, C, D, E, F )

�
(

2π

6
,
2π

6
,
2π

6
,
2π

6
,
2π

6
,
2π

6

)

.

The maximum value is 6 sin π
3 or 3

√
3 and the minimum value

is 4 sin π
2 or 4.

Exercise. Determine the extreme values of a5 + b5 + c5 +
d5 + e5 + f5 given that a, b, c, d, e, f , are distinct positive
integers with sum 36.
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Murray S. Klamkin has a long and distinguished career
in both industry and academia. He is known primarily as a
problem solver, editing the problem corners of many journals
over the years. He put this talent to good use in leading
the USA team in the IMO, chairing the USAMO committee
and authoring several books on mathematics competitions.
He is particularly fond of triangle inequalities and spherical
geometry. (Andy Liu)

Mother to her daughter: “Why does the tablecloth you just put
on the table have the word ‘truth’ written on it?”

Daughter: “Because I want to turn the table into a truth table!”

Summer Institute for

Mathematics at the

University of

Washington
SIMUW is seeking applications from talented and en-
thusiastic high school students for its 2004 summer
program.

Students experimenting
with boomerang.

Admission is competitive.
Twenty-four students will be se-
lected from Washington, British
Columbia, Oregon, Idaho, and
Alaska. Room, board, and
participation in all activities are
completely free for all admitted
participants.

Six weeks of classroom activi-
ties, special lectures, and related
activities are led by mathemati-
cians and other scientists with
the help of graduate and under-
graduate teaching assistants.

SIMUW activities are de-
signed to allow students to par-
ticipate in the experience of
mathematical inquiry and to be
immersed in the world of math-

ematics. Topics are accessible yet of sufficient sophistication
to be challenging.

2003 SIMUW participants

Students will gain a full appreciation of the nature of math-
ematics: its wide-ranging content, the intrinsic beauty of its
ideas, the nature of mathematical argument and proof, and
the surprising power of mathematics within the sciences and
beyond.

To obtain more information and application materials, con-
tact us at:

http://www.math.washington.edu/∼simuw
SIMUW
Department of Mathematics
University of Washington
Box 354350
Seattle, WA 98195–4350
Phone: (206) 992–5469
Fax: (206) 543–0397
E-mail: simuw@math.washington.edu

The 2004 SIMUW program runs from June 20th to
July 31st.
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Why I Don’t Like “Pure

Mathematics”

AVolker Runde†A

I am a pure mathematician, and I enjoy being one. I just
don’t like the adjective “pure” in “pure mathematics.” Is
mathematics that has applications somehow “impure”? The
English mathematician Godfrey Harold Hardy thought so. In
his book A Mathematician’s Apology , he writes:

A science is said to be useful of its development tends
to accentuate the existing inequalities in the distri-
bution of wealth, or more directly promotes the de-
struction of human life.

His criterion for good mathematics was an entirely aesthetic
one:

The mathematician’s patterns, like the painter’s or
the poet’s must be beautiful; the ideas, like the
colours or the words must fit together in a harmo-
nious way. Beauty is the first test: there is no per-
manent place in this world for ugly mathematics.

I tend to agree with the second quote, but not with the
first one.

Godfrey Harold Hardy
(1877-1947)

Hardy’s book was writ-
ten in 1940, when the sec-
ond world war was rag-
ing and the memory of
the first one was still
fresh. The first world war
was the first truly mod-
ern war in the sense that
science was systematically
put to use on the bat-
tlefield. Physicists and
chemists helped to de-
velop weapons of unheard
of lethal power. After
that war, nobody could
claim anymore that sci-
ence was mainly the no-
ble pursuit of knowledge.
Science had an impact on
the real world, sometimes

a devastating one, and scientist could no longer eschew the
moral issues involved. By declaring mathematics—or at least

† Volker Runde is a professor in the Department of Mathematical
and Statistical Sciences at the University of Alberta. His web site is
http://www.math.ualberta.ca/∼runde/runde.html and his E-mail ad-
dress is vrunde@ualberta.ca.

good mathematics—to be without applications, Hardy ab-
solved mathematics, and thus the mathematical community,
from being an accomplice of those who waged wars and
thrived on social injustice.

The problem with this view is simply that it is not true.
Mathematicians live in the real world, and their mathematics
interacts with the real world in one way or another. I don’t
want to say that there is no difference between pure and ap-
plied math. Someone who uses mathematics to maximize
the time an airline’s fleet is actually in the air (thus making
money) and not on the ground (thus costing money) is doing
applied math, whereas someone who proves theorems on the
Hochschild cohomology of Banach algebras (I do that, for in-
stance) is doing pure math. In general, pure mathematics has
no immediate impact on the real world (and most of it prob-
ably never will), but once we omit the adjective immediate,
the distinction begins to blur.

1533 Edition of Euclid’s Elements.

Pierre de Fermat
(1601-1665)

The fundamental theorem of
arithmetic was already known to
the ancient Greeks: every pos-
itive integer has a prime fac-
torization that is unique up to
the order of the factors. A
proof is given in Euclid’s more
than two thousand years old El-
ements , and there is little doubt
that it was known long before
it found its way into that book.
For centuries, this theorem was
the epitomy of beautiful, but
otherwise useless mathematics.
This changed in the 1970s with
the discovery of the RSA algo-
rithm. It is easy to multiply in-
tegers on a computer; it is much
harder—even though the funda-
mental theorem says that it can
always be done—to determine

the prime factorization of a given positive integer. This fact
can be used to create codes that are extremely hard to crack.
Without them, e-commerce as it exists today would be im-
possible. Who would want to key his/her credit card number
into an online form if he/she had no guarantee that no eaves-
dropping crook could get hold of it?

Another mathematical ingredient of the RSA algorithm is
Fermat’s little theorem (not to be confused with his much
more famous last theorem). Pierre de Fermat, a lawyer and
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civil servant in 17th century France, was doing mathematics
in his free time. He did it because he enjoyed the intellectual
challenge of it, not because it had any connection with his day
job. Here is his little theorem: If p is a prime number and
a is any integer that does not contain p as a prime factor,
then p divides ap−1 − 1. This theorem is not obvious, but
also not very hard to prove (it probably is on the syllabus
of every undergraduate course in number theory). Fermat
proved it out of curiosity. Computers, let alone e-commerce,
didn’t exist in his days. Nevertheless, it turned out to be
useful more than three hundred years after its creation.

Gottfried Wilhelm von
Leibniz (1646-1716)

At the time of Fermat’s death,
Gottfried Wilhelm von Leibniz
was 19 years old. Leibniz would
be called, long after his death,
the last universal genius: he
may have been the last person
to have a complete grasp of the
amassed knowledge of his time.
As a mathematician, he was one
of the creators of calculus—no
small accomplishment—and he
attempted, but ultimately failed,
to build a calculating machine,
a forerunner of today’s comput-
ers. As a philosopher, he gained
fame (or notoriety) through an
essay entitled Théodizée (mean-
ing God’s defense) in which he
tried to reconcile the belief in a
loving, almighty God with the

apparent existence of human suffering: he argued that we
do indeed live in the best of all possible worlds. Philosophical
and theological considerations led him to discover the binary
representation of numbers: instead of expressing a number in
the decimal system, e.g., 113 = 1 · 102 + 1 · 10 + 3 · 100,
we can do it equally well in the binary system (113 =
1 · 26 + 1 · 25 + 1 · 24 + 0 · 23 + 0 · 22 + 0 · 2 + 1 · 20). Since
numbers in binary representation are easy to implement on
electronic computers, Leibniz’s discovery helped to at least
facilitate the inception of modern information technology.

Vaughan Jones

Almost three hundred
years after Leibniz’s
death, the mathematician
Vaughan Jones was work-
ing on the problem of
classifying subfactors (I
won’t attempt to explain
what a subfactor is; it
has nothing to do with
multiplying numbers).
To accomplish this clas-
sification, he introduced
what is now called the
Jones index: with each
subfactor is associated
a certain number. This

index displays a rather strange behaviour, it can be infinity
or any real number greater than or equal to 4, but the values
it can attain under 4 have to be of the form 4 cos2(π/n) with
n = 3, 4, . . . . Jones asked himself why. His research led to
the discovery of the Jones polynomial (of course, he didn’t
call it that) for which he was awarded the Fields Medal,
the highest honour that can be bestowed upon a (pure)
mathematician. This Jones polynomial, in turn, has helped

molecular biologists to better understand the ways DNA
curls up in a cell’s nucleus.

Most of pure mathematics will probably never impact the
world outside the mathematical community, but who can be
sure in a particular case? In the last twenty five years, the in-
tellectual climate in most “developed” countries has become
increasingly unfavourable towards l’art pour l’art . Granting
agencies nowadays demand that researchers explain what the
benefits of their research are to society. In principle, there
is nothing wrong with that; taxpayers have a right to know
what their money is used for. The problem is the time frame.
The four examples I gave portray research that was done for
nothing but curiosity and the sheer pleasure of exploration,
but that turned out nonetheless to have applications with
sometimes far reaching consequences. To abandon theoreti-
cal research just because it doesn’t have any foreseeable ap-
plication in the near future is a case of cutting off one’s nose
despite the face.

Pure mathematics isn’t pure: neither in the sense that
it is removed from the real world, nor in the sense that
its practitioners can ultimately avoid the moral questions
faced by more applied scientists. A more fitting title might
be“theoretical mathematics.”

Enigma Machine used by
German Navy

P.S. While Hardy wrote
his Apology , other British
mathematicians worked
on and eventually suc-
ceeded in breaking the
Enigma Code used by
the German navy. By
all likelihood, their work
helped shorten the war by
months if not years, thus
saving millions of lives on
both sides.

P.P.S. In 1908, Hardy
came up with a law that

described how the proportions of dominant and recessive ge-
netic traits are propagated in large populations. He didn’t
think much of it, but it has turned out to be of major impor-
tance in the study of blood group distributions.

Mathematics is made of 40 percent formulas, 40 percent proofs
and 40 percent imagination.

Q: What caused the big bang?
A: God divided by zero. Oops!

Math is like love: a simple idea but it can get complicated.
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Problem 1. Find all functions f : (0,∞) → (0,∞) such that

f
(
x +

√
x) ≤ x ≤ f(x) +

√

f(x) for all x ∈ (0,∞).

Problem 2. Find all distinct pairs (x, y) of integers that are
solutions of the equation

x2 − xy + y2 = x + y.

Problem 3. Find the largest subset A ⊂ {1, 2, . . . , 2003}
such that for all a, b ∈ A, a + b is not divisible by a − b.

Problem 4. Let x1, x2, . . . , x2004 be positive real numbers
such that

1

2003 + x1

+
1

2003 + x2

+ · · · + 1

2003 + x2004

> 1.

Prove that x1x2 · · ·x2004 < 1.

Problem 5. Four points are given in the plane. If the dis-
tance between any two of them is not less then

√
2 and not

greater than 2, prove that these points are the vertices of a
square.

Problem 6. Find the maximum value of the area of a triangle
ABC that has vertices on three circles centered at the same
point with radii 1,

√
7, and 4, respectively.

Send your solutions to π in the Sky : Math Challenges.

Solutions to the Problems Published in the Septem-
ber, 2002 Issue of π in the Sky:

Problem 1. Let n be a fixed positive integer and consider the more
general problem of solving

xy

x + y
= n,

where x and y are positive integers. Then y = nx

x−n
. In particular, y is

a positive integer if and only if x − n is a positive integer that divides
nx. But nx = n2 + n(x−n), so we see that x−n divides nx if and only
if it divides n2. Consequently, the number of x values yielding positive
integers y is precisely equal to the number of positive divisors of n2.
Indeed, for each positive divisor d of n2, we let x = n + d. For example,
when n = 100, we get

n2 = 1002 = 24 · 54.

Thus, the positive divisors of 1002 are precisely the numbers of the form
2a · 5b with a = 0, 1, 2, 3, or 4, and b = 0, 1, 2, 3, or 4. It follows that
there are 5 · 5 = 25 divisors and hence there are 25 positive integers x

that yield positive integer y.

Problem 2. If 2003+ n = m(n + 1), then 2002 = m(n + 1)− (n + 1) =
(m − 1)(n + 1) and n + 1 ≥ 1 is a divisor of 2002 = 2 · 7 · 11 · 13. In
particular,

n + 1 = 2a · 7b · 11c · 13d

with each a, b, c, d being 0 or 1. Since there are 24 = 16 possible choices
for the exponent, there are 16 possible choices for n.

The above solutions of the problems 1 and 2 were presented to

π in the Sky by Jeganathan Sriskandarajah from Madison, WI.

These problems were also correctly solved by Robert Bilinski

from Montréal and Edward T.H. Wang from Waterloo.

Problem 3. (Solution by Wieslaw Krawcewicz) The picture below
illustrates the solid P that is the intersection of the unit cube with a
copy that is rotated 30 degrees. This solid can be obtained by cutting off
from the initial cube six identical tetrahedrons, one of which, denoted
by OABC, is indicated in the picture.

x
x

x

x

x

x

A

C

B

O

Th triangle ABC is right-angled and it has sides x, x, and
√

2x. Since
the length of the edge of the cube is one, we get

1 = x +
√

2x + x ⇐⇒ x =
1

2 +
√

2
.

Therefore the volume of the tetrahedron OABC is 1

6
x2, and conse-

quently we find that the volume V of the solid P is given by

V = 1 − 6

(
1

6
· 1

(2 +
√

2)2

)

=
5 + 4

√
2

6 + 4
√

2
.

Madison Area Technical College Math

Club Celebrated π Day on March 14, 2003

The main event of the π

Day celebration was the math
competition featuring teams
from six different two-year col-
leges in Wisconsin. Among the
other activities, there was also
an informative presentation on
“The Calculation of Pi,” a
poster competition and a pie-
eating contest. At an awards
ceremony the winning teams
and individuals were presented
with their prizes. The pic-
ture above shows several con-

testants at the beginning of the math competition.
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